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Steinman et al. (Reports, 27 February 2015, p. 988) argue that appropriately rescaled
multimodel ensemble-mean time series provide an unbiased estimate of the forced climate
response in individual model simulations. However, their procedure for demonstrating the
validity of this assertion is flawed, and the residual intrinsic variability so defined is in fact
dominated by the actual forced response of individual models.

T
he central result of Steinman et al.’s anal-
ysis (1) is the demonstration of an apparent
consistency among the responses of differ-
ent models to variable forcing in the 20th-
century climate simulations. In particular,

they claim that regional multimodel ensemble-
mean time series defines the universal forced
signal, which can be linearly rescaled to provide
unbiased estimates of the regional forced re-
sponses for individual models. Such a consisten-
cy is surprising because themodels have different
physical parameterizations and the simulations
may use different forcing subsets. If their claim
were true, it would add much confidence to the
authors’ semi-empirical attribution of the ob-
served multidecadal climate variability to the
forced and intrinsic sources.However, the implied
uniqueness of the forced signal defined by their
regional regression method is an artifact of their
analysis procedure, and the actual uncertainty of
the semi-empirical estimates of the observedmulti-
decadal intrinsic variability is much larger than
these authors have inferred.
Consider M time series of length T, corre-

sponding to M different climate simulations:
xðtÞm ;m ¼ 1;…;M; t ¼ 1;…;T . Let the bar denote
averaging across the time dimension (t) and
square brackets denote averaging across the
ensemble member dimension (m). For example,
the timemean of each ensemblemember xm and
the ensemble average time series ½xðtÞ� are de-
fined as follows

xm ¼ 1

T

XT

t¼1

xðtÞm ð1Þ

�
xðtÞ

� ¼ 1

M

XM

m¼1

xðtÞm ð2Þ

Consider a decomposition of xðtÞm into the forced
signal f ðtÞm and residual intrinsic variability DðtÞm

xðtÞm ¼ f ðtÞm þ DðtÞm ð3Þ

Without loss of generality, we can assume
xm ¼ fm ¼ 0, hence Dm ¼ 0. If the estimated
forced signal f ðtÞm is unbiased, then the time series
D
ðtÞ
m1 and D

ðtÞ
m2 of residual intrinsic variability in any

pair of simulations m1 and m2 must be uncorre-
lated (independent). Furthermore, if the distri-
bution of DðtÞm has mean 0 and variance s2, the
ensemble mean residual time series ½DðtÞ� will have
the distributionwithmean 0 and variance s2=M .
Hence, one can quantitatively assess the statis-
tical independence of different realizations of sim-
ulated intrinsic variability by comparing the actual
dispersion ½D�2 of the ensemblemean time series
½DðtÞ�with its theoretical prediction �D2�=M , where
weestimateds2 ∼

�
D2
�
. Largevaluesof ½D�2 would

indicate that assumption of statistical indepen-
dence between different realizations of intrinsic
variability DðtÞm is violated due to biases in the esti-
mated forced signal f ðtÞm , so that at least a portion
of the common true forced signal manifests in
the estimated “intrinsic” residuals DðtÞm .
Steinman et al. considered, among others, the

following two methods for estimating the forced
signal, both based on the multimodel ensemble
mean time series

f ðtÞm ¼ �
xðtÞ

� ð4AÞ

f ðtÞm ¼ am
�
xðtÞ

� ð4BÞ
The differencing method (Eqs. 3 and 4A) simply
identifies the forced signal with the multimodel
ensemble mean ½xðtÞ�. The regression method (Eqs.
3 and 4B) rescales the first-guess forced signal
½xðtÞ� for a given simulation by finding am via
least squares to minimize D2m in Eq. 3.

Steinman et al. further claimed that both of
these methods provided independent realizations
of residual intrinsic variability in climate-model
simulations, based on the fact that the resulting
variance ½D�2 of the ensemble mean residual time
series was much smaller than the theoretical value
of

�
D2
�
=M . However, it is easy to show that, due

to the choice of forcing derived using either Eq.
4A or Eq. 4B, this ensemble mean residual time
series is identically zero

½DðtÞ� ¼ 0; t ¼ 1;…;T ð5Þ
and so is its variance ½D�2 ¼ 0. Hence, the ex-
treme smallness of the dispersion of ensemble
average intrinsic variability attributed in (1) to
the statistical independence of its different real-
izations is actually an artifact of the algebraic
constraint (Eq. 5) [see (2–5)]. This flaw does
not mean that the residuals are necessarily cor-
related (not independent), but a different test is
required to determine that.
We now show directly that the regional regres-

sion approach (1) of defining the forced signal
leads to the correlated samples of residual in-
trinsic variability in the individual-model ensem-
bles (subensembles of simulations using a single
model with fixed physics package and an iden-
tical forcing history). For these subensembles, it
is the expression (Eq. 4A) that naturally gives an
unbiased estimate of the forced variability. We
considered 18 such subensembles from the Cou-
pled Model Intercomparison Project Phase 5
(CMIP5) models with four or more 20th-century
simulations (6), totaling 116 individual simula-
tions out of the 170 available simulations. The
multimodel ensemble mean based on these 116
simulations is nearly identical to the one com-
puted using all of the available 170 simulations.
We defined two alternative sets of the model-
simulated intrinsic variability. In method A, we
formed realizations of intrinsic variability by
subtracting the 5-year low-pass-filtered ensem-
ble mean of each model from this model’s indi-
vidual simulations (i.e., Eq. 4A applied separately
to individual model ensembles). The second set
(method B) defined the residual intrinsic varia-
bility using the forced signal estimated from re-
gional multimodel regression (1) (i.e., Eq. 4B
applied to the whole ensemble of 116 simulations).
To quantify independence of different realiza-

tions of intrinsic variability in the individual-
model ensembles, we introduced an ensemble
correlation measure C by summing positive cor-
relations among all possible pairs of an individ-
ual model’s M ensemble members

C ¼ 2

MðM − 1Þ
X

m>l

Cml HðCmlÞ ð6Þ

where HðxÞ is the Heaviside step function (7);
the quantity C ranges from 0 (no positive cor-
relations between individual ensemble mem-
bers) to 1 (all ensemble members are perfectly
correlated). The correlation measure (Eq. 6) was
computed for raw and low-pass-filtered intrin-
sic variability defined using methods A and B
[Fig. 1, A to C shows results for the Geophysical
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Fluid Dynamics Laboratory (GFDL) CM3 model;
see (8)]. Method A produces intrinsic variability
with C values well within the range expected from
random uncorrelated red-noise samples generated

using an autoregressive model of order 3 (AR-3) (9).
In contrast, Steinman et al.’s method B results in
samples that are significantly correlated due to their
systematic difference from the true forced signal.

We then used 18 versions of the forced signal,
estimated by the unbiased method A, to isolate
intrinsic variability in observed surface temper-
atures via Eq. 3 and Eq. 4B (Fig. 1, D to F). The
spread among the 18 estimates of intrinsic var-
iability in observations is much larger than the
tight bootstrap-based error bounds on the semi-
empirical estimates of the observed intrinsic
variability in figure 3 in (1). Hence, the actual
uncertainty of the semi-empirical attribution
by SMM is also much larger (10), thereby pre-
venting any clear inferences about the cause of
the “false pause” in the global warming (11, 12).
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Fig. 1. Intrinsic variability in the 20th-century model simulations with four or more ensemble
members identified using two different methods for estimating the forced signal: the classical
subtraction of the individual-model ensemble mean (method A) and the multimodel regional
regression method (1) (method B). (A to C) The correlation measure (Eq. 6) of statistical indepen-
dence between multiple realizations of the GFDL CM3 model (five realizations) for (A) Atlantic Multi-
decadal Oscillation (AMO), (B) Pacific Multidecadal Oscillation (PMO), and (C) Northern Hemisphere
Multidecadal Oscillation (HMO) indices; these correlations were computed for running-mean low-pass-
filtered residual time series (which characterize intrinsic variability) and are plotted here against the
averaging window size. Low correlation measure indicates statistical independence of intrinsic residuals.
Dashed lines show the 99th percentile of the correlation measure based on the 1000 simulations of the
corresponding AR-3 red-noise model. (D to F) Estimates of the observed multidecadal intrinsic
variability for (D) AMO, (E) PMO, and (F) HMO. The semi-empirical estimates (thin black lines) were
computed as in (1) based on the forced signals obtained using method A for each of the 18 model
ensembles considered, with the heavy red line indicating the average over these individual estimates.
Additional heavy lines (see legend) are for results based on linear detrending. The distance between the
black dashed lines in each plot shows the 95th percentile of the standard deviations for multidecadal
intrinsic variability estimated using method A for each of 116 simulations considered.
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