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Abstract: The bulk of our knowledge about causes of 20th century climate change comes 2 

from simulations using numerical models. In particular, these models seemingly 3 

reproduce the observed nonuniform global warming, with periods of faster warming in 4 

1910–1940 and 1970–2000, and a pause in between. However, closer inspection reveals 5 

some differences between the observations and model simulations. Here we show that 6 

observed multidecadal variations of surface climate exhibited a coherent global-scale 7 

signal characterized by a pair of patterns, one of which evolved in sync with multidecadal 8 

swings of the global temperature, and the other in quadrature with them. In contrast, 9 

model simulations are dominated by the stationary — single pattern — forced signal 10 

somewhat reminiscent of the observed “in-sync” pattern most pronounced in the Pacific. 11 

While simulating well the amplitude of the largest-scale — Pacific and hemispheric — 12 

multidecadal variability in surface temperature, the model underestimates variability in 13 

the North Atlantic and atmospheric indices. 14 

1. Introduction 15 

Multidecadal variations in the rate of global warming over the course of 20th century 16 

may reflect a combination of nonlinear changes in external forcing [Nagashima et al., 17 

2006; Meehl et al., 2007; Booth et al., 2012; Evan, 2012] with a global expression of 18 

intrinsic climate variability superimposed on forced warming trends [Folland et al., 1984; 19 

Ghil and Vautard, 1991; Schlesinger and Ramankutti, 1994; Delworth and Mann, 2000]. 20 

Relative contributions from the forced and intrinsic components are still being debated. 21 

In particular, evidence from climate models implies a limited role for intrinsic variability 22 

[Knight et al., 2005; Delworth et al., 2007; Booth et al., 2012; Evan, 2012]. On the other 23 
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hand, observational studies indicate a more ubiquitous hemispheric signature of 1 

multidecadal climate variations, implying a more complex climate evolution [Minobe, 2 

1997, 1999; Enfield et al., 2001; Wyatt et al., 2012]. 3 

Coupled models do produce synthetic climates that exhibit intrinsic (unforced) 4 

multidecadal variability in the North Atlantic region. However, the hemispheric and 5 

global expressions of this variability were generally too weak to rationalize the observed 6 

nonuniformity of the global warming rate [Knight et al., 2005; Delworth et al., 2007]. A 7 

natural conclusion was that other factors must have contributed to the 20–30-yr-long mid-8 

century pause in global warming, with the most likely candidate being a forced climate 9 

cooling by the tropospheric aerosols [Nagashima et al., 2006]. Some recent studies 10 

suggested that aerosol forcing dominates multidecadal climate signal in the 20th century 11 

not only globally, but also regionally over the North Atlantic Ocean [Booth et al., 2012; 12 

Evan, 2012], while others emphasized large uncertainties associated with both natural 13 

and anthropogenic aerosol forcing on climate [Carslaw et al., 2012; Stevens, 2013]. 14 

Following Tsonis et al. [2007], Wyatt et al. [2012] considered a network of climate 15 

indices associated, geographically and dynamically, with different climatic subsystems, 16 

and used an objective filtering method to isolate secular multidecadal variability within 17 

this network during the 20th century. On top of a uniform linear trend, they identified an 18 

oscillatory-looking wiggle with a common multidecadal time scale, but with different 19 

phases across the different indices of the climate network, thus manifesting a signal that 20 

propagates in the space of climate indices. The authors termed this propagating signal the 21 

“stadium wave,” reflecting a speculation that it dynamically originates in the North 22 

Atlantic and spreads over the remainder of the Northern Hemisphere via a hypothesized 23 
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sequence of delayed dynamical feedbacks. However, search for the stadium wave in a 1 

suite of simulations by multiple global climate models only returned stationary, in-phase 2 

signals [Wyatt and Peters, 2012], in sharp contrast with the observational analysis of 3 

Wyatt et al. [2012]. 4 

There are two possible explanations for this documented inconsistency between 5 

climate model simulations and observations. The first one is that the propagation detected 6 

by Wyatt et al. [2012] is an artifact of their statistical analysis and the lagged phasing of 7 

various climate indices is entirely due to sampling [Mann et al., 2014]. An alternative 8 

explanation is that a coherent propagating multidecadal climate signal in the Northern 9 

Hemisphere is real, in which case one needs to look further into the inability of climate 10 

models to simulate this signal. The goals of this letter are to: (i) establish robustness of 11 

the observed 20th-century stadium-wave signal and refute the Mann et al. (2014) 12 

conjecture; and (ii) document and analyze the differences between the observed secular 13 

climate variability and the one simulated by a state-of-the-art climate model. 14 

 15 

2. Data and methods 16 

2.1 Data sources 17 

We analyzed two-dimensional global monthly sea-surface temperature (SST) and 18 

sea-level pressure (SLP) time series based on the Extended Reconstructed Sea-Surface 19 

Temperature (ERSST.v3b) data set [Smith et al., 2008] and the 20th century reanalysis 20 

(NCEP-20) data set [Compo et al., 2011]. In addition, we considered five available 21 

historical 20th century simulations by Geophysical Fluid Dynamics Laboratory Coupled 22 
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Physical Model, CM3 [Donner et al., 2011], hereafter GFDL CM3. For each of these 1 

data sets, we computed their associated climate index networks. We also used an original 2 

network of climate indices from Wyatt et al. [2012], which is based on alternative data 3 

sources (see Table 1). 4 

 5 

2.2 Methodology 6 

Following Wyatt et al. [2012], we defined the 20th-century secular climate variability 7 

in the climate-index networks considered as the sum of a linear trend and a dominant 8 

multidecadal signal. This signal was objectively identified via multi-channel version of 9 

the Singular Spectrum Analysis [SSA: Broomhead and King, 1986; Elsner and Tsonis, 10 

1996] called M-SSA [Moron et al., 1998; Ghil et al., 2002]. M-SSA is an extended 11 

variant of a widely used Empirical Orthogonal Function (EOF) analysis technique 12 

[Monahan et al., 2009], which looks for the space–time patterns that maximize lagged 13 

covariance for a given multivariate time series within a range of M lags. The original raw 14 

time series can be fully recovered as the sum, over all modes, of the so-called 15 

reconstructed components (RCs) associated with each M-SSA mode. The secular 16 

multidecadal signal for the time series considered here is well represented by the sum of 17 

two leading RCs, which we will hereafter refer to as the stadium-wave signal. While the 18 

secular variability has, by definition, timescales exceeding the M-SSA window M, the M-19 

SSA can identify time delays of up to M time units between different indices (channels) 20 

comprising the climate network. In the analysis below, we used annual data and M=30. 21 



 6 

Note that our method for decomposing the climate variability into linear trend, 1 

multidecadal stadium-wave signal and the residual components is purely statistical and 2 

cannot be used for signal attribution. It is likely, however, that the trend is forced and the 3 

residual variability — which is predominantly interannual — is intrinsic, while the 4 

stadium wave may be a combination of the intrinsic and forced signals. 5 

 6 

3. Results 7 

3.1 Observed multidecadal climate variability in the 20th century 8 

The stadium wave (Fig. 1, left panel) for the set of annual indices in Table 1 9 

exhibits a common multidecadal signal, with widespread phase shifts between the 10 

individual-index RCs defining a striking propagation across the space of climate indices 11 

emphasized by Wyatt et al. [2012]. Mann et al. [2014] correctly pointed out that the 12 

phases of the stadium-wave components are subject to uncertainty. We devised the 13 

following Monte-Carlo procedure to estimate this uncertainty. This procedure is 14 

analogous in spirit to the one used by Mann et al. (2014) to demonstrate artificial 15 

propagation in a synthetic climate network, but does not require the a priori knowledge 16 

of the forced signal. Upon computing the decomposition of our climate-index network 17 

into the linear trend, multidecadal secular signal and the residual time series, we 18 

produced surrogate realizations of the residual using a linear stochastic model constructed 19 

to statistically reproduce the observed residual’s lag-0 and lag-1 covariance structure. 20 

Adding the surrogate residual time series to the actual linear trend and stadium-wave 21 

signal resulted in surrogate versions of the original climate network. These surrogate 22 
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networks were then subjected to the same decomposition procedure as the original 1 

network: that is, subtraction of a new linear trend, and identification of a new leading M-2 

SSA based stadium-wave signal, which can indeed be phase shifted with respect to the 3 

original signal due to sampling variations (see Fig. 1, right panel). However, repeating 4 

surrogate stadium wave identification 1000 times to compute phase uncertainties 5 

demonstrated that these variations are insufficient to explain the observed phase spread 6 

among individual stadium-wave components (Table 2), thus suggesting that the observed 7 

stadium-wave propagation is real. Our procedure thus presents evidence to refute the 8 

Mann et al. (2014) conjecture about artificial propagation of the observed stadium wave. 9 

The same results were obtained for the climate index network based on an alternative 10 

ERSST/NCEP-20 data set (see Supporting Information). 11 

 12 

3.2 Multidecadal climate variability in the GFDL CM3 model’s 20th century 13 

runs 14 

Unlike the observed stadium wave, the stadium waves identified in the individual 15 

GFDL CM3 20th century simulations exhibit a common shape which is characterized by 16 

in-phase signal dominated by the SST-based indices (see Supporting Information). The 17 

ensemble-mean over these five individual “stadium waves” is shown in the left panel of 18 

Fig. 2.  The common shape and phasing of these individual “stadium waves” across 19 

different realizations of the GFDL CM3 simulated 20th century climate indicates that this 20 

signal describes the forced climate response. This forced signal in fact dominates the total 21 

multidecadal variability in the GFDL model, while the residual intrinsic variability in the 22 



 8 

individual GFDL runs has interannual-to-decadal timescales (not shown). The in-phase, 1 

stationary character of the forced stadium wave in the GFDL model means that it can be 2 

well described by a single time series, which we objectively computed as the leading 3 

EOF of the set of stadium-wave reconstructions for each individual GFDL run. Indeed, 4 

such EOFs account for a major fraction of the reconstructed variance in each run, and 5 

well approximate the shape of the forced signal (Fig. 2, right panel). 6 

3.3 Patterns, magnitudes and time scales of hemispheric teleconnections 7 

The results of the above analysis show that the observed and simulated 8 

multidecadal climate variations are fundamentally different: the observations involve 9 

contributions from at least two spatial patterns to rationalize the stadium-wave 10 

propagation, while the model simulations can be well described by the stationary stadium 11 

wave characterized by a single pattern. We defined these patterns by regressing the 12 

observed and simulated SST fields onto the normalized sine and cosine predictors, with 13 

the period of 75 yr and the zero phase at year 1920. The sine predictor is thus aligned 14 

with the multidecadal undulations of the global temperature time series, in particular, 15 

with its downswing between 1940 and 1970. It also roughly corresponds to the shape of 16 

the GFDL CM3’s “stadium wave” (Fig. 2). While the GFDL CM3 based linear trend and 17 

sine patterns are reasonably consistent with their observational analogues, the cosine 18 

pattern, which is quite pronounced in observations, is essentially absent from model 19 

simulations (Fig. 3), indeed in line with our earlier stadium-wave diagnosis (see 20 

Supporting Information for SLP analysis and animations of the observed and simulated 21 

multidecadal variability). 22 
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Note that the simulated patterns shown in Fig. 3 are based on the ensemble 1 

averages of the GFDL CM3 20th century runs. This is justified by the fact that the 2 

simulated secular forced signal (trend + multidecadal stadium wave) — which is 3 

essentially the same in all of the individual GFDL runs — completely dominates the 4 

secular variability in these runs, whereas the residual intrinsic variability in all model 5 

simulations has interannual-to-decadal time scales at most (not shown). Thus, the 6 

intrinsic multidecadal variability doesn’t contribute much to the GFDL CM3’s dominant 7 

stadium wave (see Fig. 2).  8 

Furthermore, comparing the spectra of the observed and simulated climate-9 

network indices (Fig. 4) shows that the total variance levels of the secular climate 10 

variability in observations and models are also very different for some of the indices 11 

considered. We must note first that the GFDL model does a very good job in reproducing 12 

observed variances of the indices representing secular climate signal on the largest spatial 13 

scale, namely, the PDO and NHT indices and, by this measure, provides a skillful 14 

simulation of the observed large-scale climate variability. This suggests that the 15 

combination of forced and intrinsic decadal variability of Pacific SSTs dominates the 16 

NHT’s decadal variability, consistent with the results of Kosaka and Xie [2013]. 17 

However, while the variances of all raw climate indices are comparable between the 18 

observed and GFDL CM3 based climate networks, the simulated atmospheric indices, as 19 

well as the SST indices representing the relatively smaller but important Atlantic sector, 20 

namely the AMO and DP indices, have variances in the decadal-to-multidecadal range 21 

that are strikingly smaller than the observed variances by up to an order of magnitude. In 22 

summary, the bulk of the evidence suggests that the GFDL CM3’s simulated leading 23 
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multidecadal variations in the 20th century are due to the forced signal dominated by the 1 

Pacific sector and synchronized with the Northern Hemisphere’s temperatures, while the 2 

multidecadal variance in the Atlantic SSTs and the atmosphere is much weaker than the 3 

observed variance. 4 

 5 

4. Summary and discussion 6 

Our analysis demonstrates that, within the constraints imposed by a limited 7 

observational record, the spatiotemporal structure of multidecadal variability in the 8 

GFDL CM3 model exhibits noticeable differences from the observed 20th-century climate. 9 

In particular, while capturing the secular signal in the Pacific and hemispherically 10 

averaged surface temperatures very well, the simulated climate fails to exhibit 11 

multidecadal atmospheric (SLP) variations comparable in magnitude with the observed 12 

SLP variations; the simulated multidecadal SST variability in the Atlantic sector is also 13 

underestimated. Furthermore, the model is missing the lagged spatial coherence between 14 

different regional climatic fields characteristic of the observed multidecadal climate 15 

variability.  Consequently, irrespective of the cause of the observed variability — natural, 16 

forced or combined — there could be some physical processes, probably operating in the 17 

Atlantic sector of the climate system, that are not well represented in the GFDL model. 18 

Possible candidates include lack of atmospheric sensitivity to ocean induced SST 19 

anomalies [Kushnir et al., 2002], inaccurate parameterization of the mesoscale ocean 20 

eddies [Kravtsov et al., 2011], or distortion of sea-ice effects on the high-latitude air–sea 21 
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interaction [Wyatt and Curry, 2014]. Examining these issues is a worthwhile subject for 1 

future studies. 2 
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Table captions 2 

 3 

Table 1: Climate index definitions and abbreviations. The same indices were used by 4 

Wyatt et al. [2012] except for the DP index based here on the ERSST data. The 5 

acronyms SST and SLP stand for “sea-surface temperature” and “sea-level 6 

pressure,” respectively. 7 

Table 2: Stadium-wave phase uncertainties for the climate index set defined in Table 1 8 

(see also Fig. 1, left panel). The stadium wave cycle length for this data set is 9 

68±4.3 yr, with the 98% uncertainty range of 64–81 yr. The phase of each index 10 

here was defined as the location of the first maximum of its stadium-wave 11 

reconstruction. All uncertainties were computed using the Monte-Carlo procedure 12 

outlined in text. Comment: The spread of the phases among different indices 13 

(irrespective of the sign) is larger than the phase uncertainty, thus suggesting real 14 

stadium-wave propagation in the phase space of climate indices. 15 

16 
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Figure captions 2 

 3 

Figure 1: The observed stadium wave defined as the sum of two leading M-SSA modes 4 

for the 7-member set of annual climatic indices (see Table 1). Left panel: 5 

normalized stadium-wave reconstructions of each index. Right panel: actual 6 

(blue) and synthetic (red) time series for the AMO index; light lines show raw 7 

time series, while heavy lines — the sum of linear trend and the leading M-SSA 8 

pair reconstruction. See text for details on the generation of synthetic time series. 9 

We removed linear trends from each index and normalized each residual time 10 

series by its standard deviation prior to applying M-SSA with window size M=30 11 

yr. Comments: (i) The M-SSA filtered indices share a common timescale, but 12 

exhibit a range of phases, which defines the stadium wave “propagation.” (ii) The 13 

phases of the stadium wave are subject to uncertainty. 14 

Figure 2: The “stadium wave” in the 20th century simulations of the GFDL CM3 model; 15 

we looked at the same climate-index subspace as in Fig. 1 except for the AT index, 16 

which was not included. Left panel: ensemble-mean of stadium-wave 17 

reconstructions for each index over 5 available GFDL simulations. Right panel: 18 

the leading principal component (PC) of the M-SSA stadium-wave reconstruction 19 

for individual runs (see legend, which also shows the percentage of the 20 

reconstructed variance accounted for by this leading PC). We removed linear 21 

trends from each index and normalized each residual time series by its standard 22 

deviation prior to applying M-SSA with window size M=30 yr. Comments: (i) 23 

The M-SSA filtered indices share a common in-phase signal for all runs, 24 



 19 

suggesting it to represent a forced climate response. (ii) The phases of this forced 1 

signal vary slightly from simulation to simulation, reflecting uncertainties of our 2 

identification procedure. 3 

Figure 3: Regression (map units: ºC) of the observed (ERSST: left) and simulated 4 

(ensemble average of the five GFDL’s 20th century runs: right) SST time series 5 

(1900–1999) onto linear trend (top), as well as onto 75-yr-periodic sine (middle) 6 

and cosine (bottom) predictors; zero phase for these harmonic predictors was 7 

chosen to correspond to year 1920. All three predictors were normalized to unit 8 

variance, with the resulting ranges over the 20th century of 3.4 units for the trend 9 

and 2.9 units for the sine and cosine predictors. We smoothed each SST time 10 

series by the 20-yr boxcar running-mean filter prior to computing regressions. 11 

Comment: Multidecadal climate variability in GFDL CM3 is characterized by a 12 

reasonable trend, underestimated sine pattern in the Atlantic and essentially non-13 

existent cosine pattern. 14 

Figure 4: Spectra of the observed and GFDL simulated climate indices. The spectra are 15 

defined here as the variance of the boxcar-running-mean averaged time series for 16 

different window sizes. The abscissa on all plots shows half the window size in 17 

units of years, with 0 corresponding to no averaging (raw annual data), 1 — to 3-18 

yr boxcar averages, 2 — to 5-yr boxcar averages and so on.  The blue line shows 19 

the observed spectra based on the ERSST/20th-century reanalysis indices, and the 20 

red dashed lines show the range of spectral estimates over those for 5 individual 21 

20th century runs. Index names are listed in the caption of each panel.  Comments: 22 

(i) The GFDL CM3 model matches well the observed variance of raw (unfiltered) 23 
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data for all indices, and that throughout the whole spectral range for the NHT 1 

and PDO indices. (ii) However, the GFDL-based variance of low-frequency 2 

(multidecadal) behavior for other indices (DP, AMO, NAO, and ALPI) is smaller 3 

than the observed variance by a factor of 5–10.4 



 21 

 1 

Table 1: Climate index definitions and abbreviations* 2 

Index/Acronym Reference/source Description 
Atlantic Dipole/DP ERSST data set 

Smith et al. [2008] 
Difference in SST area 
averages between the (60º–
10ºW, 40º–60ºN) and (50º–
0ºW, 60º–40ºS) 

NH surface 
temperature/NHT 

HadCRUT3 data set  
Brohan et al. [2006] 

Average land-surface 
temperatures and SSTs of 
Northern Hemisphere 

 
Atlantic Multidecadal 
Oscillation/AMO 

Kaplan et al. [1998] SST 
data set 

North Atlantic SST 
averaged across 0–60°N, 
75–7.5°W 

Atmospheric Mass 
Transfer/AT 

[Vangenheim, 1940; Girs, 
1971] 

Prevailing air transfer 
direction 30°–80°N; 45–
75°E 

 
North Atlantic 
Oscillation/NAO 

Hurrell [1995] Normalized SLP difference 
between Azores and 
Iceland, wintertime values 
(DJFM) were used 

 
Pacific Decadal 
Oscillation/PDO 

[Mantua et al., 1997; 
Minobe, 1997, 1999] 

Leading principal 
component of monthly SST 
north of 20°N in the North 
Pacific, with century-scale 
globally averaged SST 
signal removed 

 
Aleutian Low 
Pressure/ALPI 

Beamish et al. [1997] Mean area of the North 
Pacific region with monthly 
SLP < 1005 mb during 
winter (DJFM) 

 3 
*The same indices were used by Wyatt et al. [2012] except for the DP index based here 4 
on the ERSST data. The acronyms SST and SLP stand for “sea-surface temperature” and 5 
“sea-level pressure,” respectively. 6 

7 
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Table 2: Stadium-wave phase uncertainties for the climate index set defined in Table 1*  2 

Index 
name 

–DP –NHT –AMO AT NAO PDO ALPI 

Phase/ 
STD 

1908±2.9 1907±3 1912±2.7 1919±3.2 1921±6.5 1929±3.3 1932±5 

Phase 
90% 
range 

1903 –
1913 

1901 –
1911 

1907 –
1915 

1914 –
1924 

1911 –
1932 

1924 –
1934 

1924 –
1940 

 3 
*(See also Fig. 1, left panel.) The stadium wave cycle length for this data set is 68±4.3 yr, 4 
with the 98% uncertainty range of 64–81 yr. The phase of each index here was defined as 5 
the location of the first maximum of its stadium-wave reconstruction. All uncertainties 6 
were computed using the Monte-Carlo procedure outlined in text. Comment: The spread 7 
of the phases among different indices (irrespective of the sign) is larger than the phase 8 
uncertainty, thus suggesting real stadium-wave propagation in the phase space of climate 9 
indices.10 
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Figure 1: The observed stadium wave defined as the sum of two leading M-SSA modes 2 

for the 7-member set of annual climatic indices (see Table 1). Left panel: 3 
normalized stadium-wave reconstructions of each index. Right panel: actual 4 
(blue) and synthetic (red) time series for the AMO index; light lines show raw 5 
time series, while heavy lines — the sum of linear trend and the leading M-SSA 6 
pair reconstruction. See text for details on the generation of synthetic time series. 7 
We removed linear trends from each index and normalized each residual time 8 
series by its standard deviation prior to applying M-SSA with window size M=30 9 
yr. Comments: (i) The M-SSA filtered indices share a common timescale, but 10 
exhibit a range of phases, which defines the stadium wave “propagation.” (ii) The 11 
phases of the stadium wave are subject to uncertainty. 12 

13 
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Figure 2: The “stadium wave” in the 20th century simulations of the GFDL CM3 model; 2 

we looked at the same climate-index subspace as in Fig. 1 except for the AT index, 3 
which was not included. Left panel: ensemble-mean of stadium-wave 4 
reconstructions for each index over 5 available GFDL simulations. Right panel: 5 
the leading principal component (PC) of the M-SSA stadium-wave reconstruction 6 
for individual runs (see legend, which also shows the percentage of the 7 
reconstructed variance accounted for by this leading PC). We removed linear 8 
trends from each index and normalized each residual time series by its standard 9 
deviation prior to applying M-SSA with window size M=30 yr. Comments: (i) 10 
The M-SSA filtered indices share a common in-phase signal for all runs, 11 
suggesting it to represent a forced climate response. (ii) The phases of this forced 12 
signal vary slightly from simulation to simulation, reflecting uncertainties of our 13 
identification procedure. 14 

 15 
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Figure 3: Regression (map units: ºC) of the observed (ERSST: left) and simulated 1 

(ensemble average of the five GFDL’s 20th century runs: right) SST time series 2 
(1900–1999) onto linear trend (top), as well as onto 75-yr-periodic sine (middle) 3 
and cosine (bottom) predictors; zero phase for these harmonic predictors was 4 
chosen to correspond to year 1920. All three predictors were normalized to unit 5 
variance, with the resulting ranges over the 20th century of 3.4 units for the trend 6 
and 2.9 units for the sine and cosine predictors. We smoothed each SST time 7 
series by the 20-yr boxcar running-mean filter prior to computing regressions. 8 
Comment: Multidecadal climate variability in GFDL CM3 is characterized by a 9 
reasonable trend, underestimated sine pattern in the Atlantic and essentially non-10 
existent cosine pattern. 11 
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 1 

Figure 4: Spectra of the observed and GFDL simulated climate indices. The spectra are 2 
defined here as the variance of the boxcar-running-mean averaged time series for 3 
different window sizes. The abscissa on all plots shows half the window size in 4 
units of years, with 0 corresponding to no averaging (raw annual data), 1 — to 3-5 
yr boxcar averages, 2 — to 5-yr boxcar averages and so on.  The blue line shows 6 
the observed spectra based on the ERSST/20th-century reanalysis indices, and the 7 
red dashed lines show the range of spectral estimates over those for 5 individual 8 
20th century runs. Index names are listed in the caption of each panel.  Comments: 9 
(i) The GFDL CM3 model matches well the observed variance of raw (unfiltered) 10 
data for all indices, and that throughout the whole spectral range for the NHT 11 
and PDO indices. (ii) However, the GFDL-based variance of low-frequency 12 
(multidecadal) behavior for other indices (DP, AMO, NAO, and ALPI) is smaller 13 
than the observed variance by a factor of 5–10. 14 


