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Multidecadal Climate VariabilityMultidecadal Climate Variability

Signal Propagation across the               

Northern Hemisphere

2012

Marcia Glaze Wyatt

Outline presentation:

There are three major goals I wish to accomplish with this talk:

1). To explain the approach/view of climate.

2.) To detail the strategy to test the hypothesis: methods, and data sets.

3.) To present the results and offer insights gained from them.
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How Something is Viewed Determines What Can be Seen!
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My first goal in this presentation is to tamper a bit with convention. Traditionally, in 

science, the reductionist approach often is undertaken, with scrutiny of individual 
processes, particular geographical regions, or specific variables. In short, we often 

study the “parts” of a system, especially in complex systems such as climate. 

Observation of natural systems reveals to us on an elementary level that 
understanding component parts is less instructive than recognizing 
interaction of component parts. An orchestra of crickets and the
choreography of birds in flight provide examples. Counterintuitive as this 
may appear, simplifying has its strengths.

Offer general approach taken with this study, briefly introducing a few concepts that 

frame how climate variability was studied. (will introduce networks, self-sustained 
oscillators and their ability to be synchronized, synchronization within a network 

with local coupling within the architecture, allowing for propagating signal.)

Reductionism: A scientific approach that focuses on the study of component parts. 

Masks true dynamics of earth systems.

Caveat: Processes in nature interact, generating complex systems. Such systems 

and are far more than the sum of their individual parts.

Collective View: A scientific approach that considers the interactions between and 
among component parts. Understanding details of phenomenology of a system is 

compromised slightly at the expense of gaining greater insight into interactive 

behavior, which is not equivalent to the sum of parts. 
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How well can we understand a 

system by “viewing” only its parts?

A network’s ultimate 
expression is not merely a 

sum total of its parts. 

It is the interaction of individual parts that gives a sense of organization to a system.

Sum of Parts not equal to the Whole! The whole is far greater. Interaction of 
parts explains observation.

Simplifying has its strengths when evaluating complexity of systems.

Complexity theory: organized behavior of large systems. Global coupling to local 

coupling, the latter, in chains and lattices, for examples. 

Beyond pure synchrony: waves of activity can propagate steadily from one oscillator 

to the next. Ex: intestine “squeeze” sequence or heart. Good analogy for stadium-

wave propagation.

Notes to self: Discuss general approach taken with this study, briefly introduce a 

few concepts that frame how climate variability was studied. (introduce networks, 

self-sustained oscillators and their ability to be synchronized, synchronization within 

a network with local coupling within the architecture, which allows for propagating 
signal.)

Reductionism: study of component parts

Collective View: considers the interaction of component parts. The phenomenology 

is compromised slightly at the expense of gaining greater insight into interactive 
behavior, which is not equivalent to the sum of parts. 
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Network = a collection of interacting Network = a collection of interacting ““partsparts””

Viewing Climate as a NetworkViewing Climate as a Network

Complexity: defined by configurations of parts, rather than the nature of the parts themselves. 

Focus on interactions of component parts and the macroscopic properties that result. An example of a 

system that spontaneously emerges due to feedback = the wave. Cascading behavior.

*Scale-free graph, grown by attaching new nodes at random to previously existing nodes. The 

probability of attachment is proportional to the degree of the target node; thus richly connected nodes 

tend to get richer, leading to the formation of hubs and a skewed degree distribution with a heavy tail. 

Architecture of interaction. Quest for spontaneous order, self-organization. 

*scale-free networks and power distribution of links. Number of links between nodes in relationship 

to the number of nodes follows a power law that is *scale-free.

Can find power laws in fractals; they also arise at phase transitions. Such power laws suggest self-

organization. At brink of phase transitions. Natural consequence of network growth. Symptom that 

reveals a process. Three tendencies: short chains, high clustering, scale-free link distributions. Are 

inherently resistant to random failures; yet vulnerable to attack against their hubs.

One way to define links in a network is by correlation coefficients. Scale-free networks are 

characterized by supernodes.

Connectivity. Structure always affects function. For example: clustered local connections and 

haphazard global ones. Think of crickets. When nonlinear elements are hooked together in gigantic 

webs, the “wiring” matters! The layout of the structure affects its dynamics. Duncan Watts (1998) 

student of Strogatz. Neither regular or random networks seemed applicable. Ex: web = pattern and a 

maze. Realm b/n order and randomness. 

Clustering: probability that 2 nodes connected to a common node will be linked to each other.

Discuss small-world and its power in communicating so that far-away nodes can become 

connected. Mark Granovetter came up w/ idea of weak ties (the strength of). 

* Scale-free meaning that this distribution of links in a network is not dominated by any single 

representative scale.
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NODE

EDGE

NETWORKS: NETWORKS: 

In its simplest form, a network is a collection of nodes joined by edges

Number of edges = Node-degree

Physics Today  Nov ‘08

Communication

Stability

Earth’s climate will be presented here as a network.

In simplest form, network = collection of nodes joined by lines or edges.

Studied since at least the 18th century, networks have taken on a new practical role 

in recent years as a primary tool in the study of complex systems – real-world 
systems of interacting components for which networks provide a simple but 

tremendously useful representation. 

Statistical properties of networks studied; revealed observation that although a 

pattern of connections is not a regular one, it is not completely random.
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Each Node = SelfEach Node = Self--Sustained Sustained ““OscillatorOscillator””

Self-sustained Oscillators Can be 
Synchronized

In the CLIMATE NETWORK, each node is a self-sustained oscillator. 

An autonomous, or self-sustained oscillator, in isolation = system’s natural oscillation (dynamics w/o explicit 
time dependence). 

Cyclic frequency convenient way to characterize: #oscillations/unit time. 

Angular frequency 2pi/T or 2pi*frequency. 

Autonomous systems oscillate b/c of an internal energy source that is transformed into oscillation (think of 
person standing on swing, pumping energy into system by timing the stand and squat positions according to 
phase). Oscillation continues until energy source expires. 

Source of energy for regional oscillatory systems on Earth maybe = winds, and those result from feedback of T 
gradients. ??? Solar is ultimate source. Earth’s rotation plays role, as well. Planetary-scale ocean waves and 
their interactions influence oscillatory behavior, as well.

Outstanding feature common to all autonomous oscillators = ability to be synchronized. Reason lies in free 
phase. If perturbed, restores to new position. Remembers initial state. For a self-sustained oscillator, if 
perturbed, its phase point falls back to original limit cycle and original rhythm is restored. (but can move to a 
different place if adjusting to rhythm of another oscillator (refer to synchronization, next slide). 

In contrast to self-sustained oscillation, in the case of a forced movement, a system whose fluctuation is driven 
by external force (resonance) might be perturbed. If so, when restored, phase falls back to exact phase of 
driving force. Resonance is not same as synchronization!

Both forced and self-sustained oscillators are represented by closed curves in phase space, but phase on limit 
cycle (autonomous system) is free. 

Terms: phase = quantity that increases 2pi w/ one oscillation cycle. Determines state of oscillator. Limit cycle 
represents periodic process of oscillator. Phase space coordinates plotted. Evolution in time describes the 
behavior (periodic). Ex. For a sinusoidal oscillation, the trajectory (circle) of the limit cycle is represented by the 
sine curve on a plot of x (vertical) against time. X(t) = peridodic process= Asin(ώt + initial phase) [A=amplitude = 
intensity of oscillation and w = angular frequency (2pi*freq). Perturbation of amplitude decays; perturbation of 
phase does not. All trajectories tend toward the limit cycle in autonomous system; the limit cycle is therefore 
considered to be a simple attractor (and strange if chaotic oscillator). Convergence w/ time follows direction 
described by Lyapunov exponents.

For self-sustained oscillator, phase difference = phase 1 – phase 2, where original phase + angle of that 
difference as represented on closed curve in space, and that angle = phase shift.
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Individual SelfIndividual Self--Sustained Sustained ““OscillatorsOscillators””

Share Tempo Share Tempo 

SYNCHRONIZATIONSYNCHRONIZATION

InteractInteract

AdjustAdjust

SelfSelf--OrganizingOrganizing

Synchronization involves adjustment of tempos and matching of rhythms. With 
synchronization of phase, amplitude not necessarily synchronized. 

Note, if noisy forcing, can cause phase diffusion or random walks. The phase 
perturbations accumulate, some cancelling out over time. They never grow or 
decay.  (ex: circadian rhythm and cloudy vs sunny days and relationship to phase 
shift b/n circadian and external daylight forcing).

Phase locking = phase difference bounded. 

Synchronization = will result in onset of constant phase difference among 
synchronized oscillators. Also frequency locking among the synchronized 
oscillators. 

Typical synchronization involves one system more powerful than other, more 
influence on resulting shared tempo.

Synchronization depends on frequency detuning and coupling strength. 
Frequencies of self-sustained oscillators must be similar and the coupling strength 
b/n them not too strong. A fine balance leads to a collection of self-sustained 
oscillators adjusting their intrinsic tempo to match a universal one that all “march” to. 
When coupling among oscillators breaks down, the oscillators resume their internal 
rhythms.

Phase shift (or difference) depends on initial frequency mismatch (detuning) and the 
parameters of coupling.

Arnold tongue = region of synchronization where these factors are “just right”.
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Network of 
“Parts”

“Parts” are          

self-sustained 
oscillators

Local coupling
between 

oscillators

WITHWITH

ADDADD

COMMUNICATION

STABILITY 
SELF-ORGANIZING

SIGNAL PROPAGATION

For the CLIMATE NETWORK, we have: a network of nodes, or parts (provides 

communication stability). Each node (part) is a self-sustained oscillator (prone to 
self-organization when collective behavior ensues). A variety of network 

architectures. Some are globally coupled. Many are locally coupled. Such coupling 

is ubiquitous in nature, and hypothesized as underpinning signal-propagation 
through the stadium-wave climate network.



9

9

“StadiumStadium--Wave SignalWave Signal”

Beyond SynchronyBeyond Synchrony

Local Coupling →Signal Propagation

Synchronization requires the participating systems be self-sustained oscillators. 

If the oscillators have different intrinsic rhythms, there will always be a phase lag 

between systems. Most phase lags between the oscillators are imperceptibly small, 

as most systems studied have very short periodicities relative to those of climate; 
regardless of length of phase-lag, the synchronized systems are phase-locked: a 

fixed relationship of phase (angle 0 to 2pi) is locked in. 

Local coupling provides means of signal propagation. 

Chaotic oscillators can synchronize. Result is similar to periodic oscillators in 
presence of noise. 
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““Stadium WaveStadium Wave””

Climate as a Stadium Wave:

Propagation of a low-frequency climate-signal through a network of 
atmospheric, Ice, and oceanic self-sustained oscillating indices

HypothesisHypothesis

As opposed to the global coupling that Kuramoto and others had studied, oscillators 

can be arranged in a one-dimensional chain or ring. This network architecture is 
described as “beyond synchrony”! Waves of activity can propagate steadily from 

oscillator to oscillator. Waves turn out to be more common than sync (in the sense 

of synchronous (occurring together) fluctuations). In other words, waves can be 

described as a lead-lag relationship among locally coupled oscillators. Most real 

oscillators are, indeed, coupled locally, not globally – hence, propagate a signal 
through the network. Ex: intestine is effectively a one-dimensional chain of 

oscillators. Spiral waves propagate endlessly. Around and around. (Belousov). 
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Data Sets for testing the 

Stadium-Wave Signal

Instrumental data 
20th century 

Proxy data

1700-2000

CMIP3 model 
data

20thc

Pre-industrial

I II

III

Three different data sets for three different goals: document/prThree different data sets for three different goals: document/probe mechanism; obe mechanism; 
history; model reproduction.history; model reproduction.

Step OneStep One:

Goal:Goal:

AA.) Test existence of signal 20th century

B.)B.) Document its Character

C.)C.) Explore mechanisms

Data SetsData Sets:

20th Century Instrumental

Step TwoStep Two::

Goal:Goal:

Test History with Proxy Data

A.)A.) 1900-2000

B.)B.) 1850-2000

C.)C.) 1700-2000

Data Sets:Data Sets:

A.)A.) Proxy Data 

Step Three:

Goal:Goal:

Determine if model-generated data can reproduce signal

Data SetsData Sets:

A.)A.) 20th century CMIP3 data

B.)B.) Pre-industrial CMIP 3data
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MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linearly Detrend

13y Smooth

3rd Order

M-SSA

Correlations
Significance Tests

STEP ONE:

STEP THREE

STEP TWO:

20thc

“extended data set”

“dynamic” proxies

1700-2000

Modeled

20thc   
pre-ind

3rd Order
M-SSA

Correlations
Significance Tests

“conventional”proxies 

“dynamic” proxies

2nd Order
M-SSA

Significance Tests

CMIP3 data

documentdocument

mechanismmechanism

historyhistory

Signal Signal 

simulationsimulation

DJFM all indices

Proxy

A series of methodologies was followed in testing the stadium wave.

The first step was rudimentary, using raw observational data, linearly detrending each index to 
highlight any inherent multi-decadal signal, and applying to each index a 13-year filter to remove the 
seasonal, annual, interannual, and decadal-scale fluctuations. 

Emphasis on winter months (DJFM) when ocean-atmosphere interaction most active:

Raw data analysis suggested: Similar multi-decadal timed variability among all indices, with lead-lag 
relationships that could be supported by various local and regional mechanisms. 

Employed next step: multi-variate statistical analysis that focuses on lead-lag relationships and adept 
at identifying shared timescales of variability. Used Multiple Channel Singular Spectrum Analysis (M-
SSA). Used M-SSA to document relationships among collection of indices and to establish statistical 
robustness of signal propagation. Used different data sets of observational data to do this, each 
representing spatial range across entire Northern Hemisphere.

The second step involved proxy data, first for the 20th century. The proxies were chosen specifically 
based on their relationship to the observed indices. Results supported the observational data. More 
proxy data were used to extend the time line into the 19th and then the 18th centuries. Signal 
propagation between 1850 to 2000 was similar; between 1800 and 1850, slight differences emerged 
in amplitude and frequency. From 1800 back to 1700, amplitudes were considerably smaller and 
frequencies higher. Proxy data contain considerable noise and carry numerous messages within their 
records, making evaluation difficult.

The third step involved reconstructing the stadium-wave indices from raw data simulated by 
computer models from the CMIP3 project. M-SSA was applied to these simulated indices in the same 
manner as was done with the observational data. In scores of runs, no stadium waves were detected. 
We suggest that this is likely due to absent or poor representation, of multi-decadal interactive 
dynamics in the computer models employed. Subsequent studies by the stadium-wave team (2014, 
2015, and 2017) support this interpretation.
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MethodsMethods “original 8”

“complementary 7”

1st Order
Linearly Detrend

13y Smoothed

STEP ONE:

20thc

document
IndicesIndices: 

NHT, AMO, AT, NAO, 

NINO3.4, NPO, PDO, ALPI 

DJFM all indices

AMO

NAO

AT

NINO 3.4

NPOPDO

ALPI

NHT

First Step: Evaluating observed raw data (linearly detrended, 13-year smoothed) of 

eight climate indices representing various geographical regions and diverse 
dynamical foundation.
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“Real Time” timeseries:   

-NHT, -AMO, NAO, NPO, PDO

Even with just five indices shown here (raw indices linearly detrended, 13-year 

smoothed, winter months), one can see, it’s a mess… But something is there…
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NAO lags AMO ~ 4 years, preceding PDO ~ 8 years

ALPI scaled and lagging AMO 12 years

Random Red-Noise? or Coherent Signal?

•Lagged correlations of multidecadal signal in various indices

•Conclude possibility of signal

•Need tool that detects lagged relationships

-AMO (4y) +NAO (8y) +PDO (4y) +ALPI

Here are plotted four of the eight indices (raw data linearly detrended, 13-year 

smoothed, winter months). The Atlantic Multidecadal Oscillation (AMO) is plotted in 
negative polarity. Lags highlight apparent order. Suggest higher-order method 

needs to capture lagged signals.

Need Tool that Detects Lagged Relationships



16

16

MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linearly Detrend

13y Smooth

STEP ONE:

20thc

document

Multichannel Singular Spectrum Analysis

NHT, AMO, AT, NAO, 

NINO3.4, NPO, PDO, 

and ALPI

1) Individual Time Series Extended

2) Covariance Matrix

3) Shared Variability

4) Plot means of mode variance

DJFM all indices

Propagating Signals

detrended & normalized 
prior to  processing

M-SSA is a multivariate statistical tool adept at finding relationships among a 

collection of variables. See page 12 for brief description of usage; see page 17 for 
further details.
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MM--SSA PlotsSSA Plots

. M-SSA spectrum of the network of eight climate indices (see text): (a) Individual variances (%); (b) cumulative variance (% of 

the total). The M-SSA embedding dimension (window size) M=20. The errorbars in (a) are based on North et al. (1982) criterion, 

with the number of degrees of freedom set to 40, based on the decorrelation time scale of ~2.5 yr. The +-symbols and dashed 

lines in panel (a) represent the 95% spread of M-SSA eigenvalues base on 100 simulations of the eight-valued red-noise model 

(1), which assumes zero true correlations between the members of the eight-index set.

Random variance 

unlikely for this 
leading pair; 

upper red dashed 
line outlines the 

corresponding 
surrogate spectra 

generated by red-
noise model.

Random variance 

unlikely for this 
leading pair; 

upper red dashed 
line outlines the 

corresponding 
surrogate spectra 

generated by red-
noise model.

M-SSA spectrum of eight climate indices. Real data in lagged covariance matrix. M-SSA “disentangles” the lagged 
covariance matrix. It is a generalized form of EOF analysis; it is EOF analysis applied to an extended time series. Excels in 
its ability to detect lagged relationships characteristic of propagating signals. Where EOF detects zero-lag relationships, M-
SSA detects non-zero-lagged ones.

M = window = number of lagged (or shifted on matrix) copies of time series of given index. Do this to all the indices. All in the 
covariance matrix. So looking for repeating patterns and propagating signals.

Detected shared (at a lag) patterns of variability are described by an eigenfunction. The eigenfunction that best describes 
this co-variability among all indices = mode 1. The next best eigenfunction = mode 2, etc. The mean of the variance of each 
time series of this eigenfunction is calculated for each mode. These individual mean variances (mean of mode) plotted in (a). 
Modes (patterns of shared variability at a lag). The variances of each mode represent the temporal variability shared by all 
the indices. But significantly, b/c the indices sharing this pattern of variability represent geographically diverse regions, a 
spatial component is added to the temporal character. Thus, the modes in our analysis will be used as spatio-temporal filters. 
A total of 20 modes were extracted; ten are given in this spectrum. To test the significance of the occurrence of these modes, 
in other words, to test the likelihood or non-likelihood that these modes are simply a product of random measurements, a 
red-noise model is fitted to the raw data of the indices. Red-noise is a low-frequency signal resulting from random 
fluctuations. It is common in geophysical indices where “memory” or inertia in the systems carry a signal from one year to the 
next. For example, slowly varying factors like snow cover, polar ice, SST, and soil moisture will contribute persistence to a 
time series (memory). The spatial pattern of this red-noise would differ from the spatial pattern of a coherent signal. This 
allows us to test for the randomness of our identified modes. Using red-noise modelbased on linear regression based on x to 
the nth power and random numbers selected from a normal distribution with zero mean and unit variance. Parameters a and 
σ of equation (x^n+1 = ax^n + σw) are determined by linear regression. The surrogate time series are analyzed using 
autocorrelation max lag-1 which can extract a repeating pattern (if there is one) from the noise of the data set. This 
procedure was similarly done to the original “real” data. From this red-noise test, we get two “checks” on randomness. One is 
the red-noise envelope. This envelope represents 2 standard deviations of an assumed Gaussian distributed sample 
population of red-noise surrogate modes of variance. We plot the boundaries of this 95% distribution of surrogate-based 
modes (red dashed lines). The means of the modes extracted from real data are plotted also. Modes of real data that fall 
within the red-noise envelope are assumed to be random fluctuations. They cannot be considered significant. On the other 
hand, modes that fall outside this envelope may be non-random. We attach to these mode means error bars. These indicate
the 95% confidence level (standard uncertainty) of the mean. How closely do these mean values reflect true values? The 
standard error is the standard deviation of the mean. The std/(N*)^1/2 is the formula. N* = the degrees of freedom (in our 
case, we use a formula (Bretherton) where N* is based on the maximum correlation of the lag-1 autocorrelation of indices 
and the decorrelation time results from this. N* = N(1-r^2)/(1+r^2), where r=0.65 here and N=100 (for # original time series). 
N* = 40 and decorrelation time = 100/40 (N/N*) = 2.5. This is an estimate of how many years it takes for an observation to be 
independent of another observation. These error bars are computed from the red-noise model described previously. 
Attached to the real-data mode-means is plus and minus one std dev (total=2std). Thus, if these mean variances AND their 
attached error bars fall outside this envelope, they are 5% or less likely to be non-random (the null hypothesis of randomness 
has only a 5% chance of being “right”). The next step in assessing significance is a pair of modes. Their mean value must be 
statistically indistinguishable. This is assessed by an overlap of error bars. 

Red-noise model based on x to the nth power and random numbers selected from a normal distribution with zero mean and 
unit variance. Parameters a and σ of equation (x^n+1 = ax^n + σw) are determined by linear regression. The surrogate time 
series are analyzed using autocorrelation max lag-1 which can extract a repeating pattern (if there is one) from the noise of 
the data set. This procedure was similarly done to the original “real” data.
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RCs for Modes of Variability 

RCs 1 & 2 statistically significant

RC 1 + RC 2 = stadium wave

+

If the a pair of modes has been identified from the real data, whose error bars overlap (and therefore 

= an oscillatory pair), and their significance at the 5% level is determined, we then look to see if this 

pair is truly a candidate for being oscillatory. We generate a time series for each index. This new time 

series is derived from each mode. The variance time series of each mode is a temporal filter. In 

short, where the shared signal fluctuates up and down, this “filter” (boxcar) detects where this occurs 

in each index. A new time series of each index is thus generated. This new “M-SSA-filtered” time 

series of an index is called a reconstructed component (RC). Plotted are the index RCs for each 

mode, one through 8. We are considering only statistically significant modes. The only significant 

ones are one and two. Note: M-SSA with a window of 20 (20 lagged copies) is designed to resolve 

periodicities of 20y or less. None of statistical significance were detected as a shared signal among 

the indices of our chosen network. The only ones detected were larger than a 20-year periodicity. 

Such cannot be resolved as true periods. The time series length is too short. We describe the 

variability as secular-scale or secular variation, meaning one or fewer cycles per century. We find a 

secular variability in each of the leading two modes ~ 64 years (visual inspection). 

If both leading modes have similar periodicity, then one last “check” is that their phasings are in-

quadrature. Phasing refers to where the peaks and troughs are. In-quadrature means a quarter of a 

cycle offset. In the case here, with an approximate 64-y “quasi-period” in the 20th century, in-

quadrature would indicate an approximate 15-y offset between RCs in mode one and RCs in mode 2. 

Now we can say we have a true oscillatory pair. We next combine them. This hybrid of modes 

becomes our “climate signal”. We use the resulting RC combination as our filter, which we apply to 

all indices of the network in order to visualize the climate signal as it propagates through them.
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Climate as a Climate as a ““Stadium WaveStadium Wave””

Note:

AMO and NHT 

plotted in 
negative 
polarity.

Hemispheric Signal Propagation
via 

a synchronized sequence of 
atmospheric and lagged oceanic teleconnections

Note each index has been normalized by dividing by the std dev of the index

While an exact multidecadal variability cannot be assigned with any statistical rigor, what is 
significant is that this same secularly varying signature is shared by many indices from diverse 
regions and that this signal is found in one index and followed by the same phase in another index 
within a year or so, followed predictably by the same phase in the next index, etc. 

We can consider this “signal” a spatio-temporal filter. Index acronyms in sequence, ordered 
according to signal propagation. Years b/n indices = lag times b/n. Bootstrap method applied to 
estimate mean lag times b/n each pair of indices. The resulting total “period” assessed by MESA 
(maximum-entropy spectral analysis) and by totaling the individual lags assessed by bootstrap-based 
cross-correlations.

Statistical Results

Climate signal (propagation) documented

Significance 95%

Speculation

Tempo (cannot test for statistical significance of periodic behavior, as time series too short)

Feedback

Cautionary Note

Next Step:

Explore Mechanism
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MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linear Detrend

13y Smooth

3rd Order
M-SSA

Correlations

Significance Tests

STEP ONE:

20thc

“extended data set”

“dynamic” proxies

document

mechanism

DJFM all indices,
where possible

SST dipole

PCI

Eurasian Arctic

Added 

indices

Running Conclusion Running Conclusion 
(Step One: 2nd order analysis)

Statistical Results

Climate signal (propagation) documented

Significance 95%

Speculation

Tempo

Feedback

Cautionary Note

Next Step:

Explore Mechanism
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Eurasian Arctic Shelf Seas

“West Ice”

“East Ice”

“Total Ice”

In addition to dissertation (Wyatt), see Wyatt and Curry 2014 for paper (Role for 

Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during 
the 20th century) on involvement in stadium-wave propagation.
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-AMO

W estIce

IceTotal

AT

PDO

IceTotcs

ACI

ArcticT

NHT

AMO

PCI

Ocean-Ice-Atmosphere Interactions

-NHT, -AMO, AT, NAO, NINO, NPO, PDO, ALPI, GB, JS, NPGO, SSN, -LOD, 

Arctic T, TIE = 15 indices (Plotted are the reconstructed versions of these indices 
(RCs), generated from the combination of RC1 and RC2, as products of M-SSA, 

meaning that the two leading modes of multidecadal variability shared among all 

these indices are represented by these plotted curves).

Note relationships: WIE & negativeAMO; Ice Total & AT; cumulative sum of Ice 

Total and ACI (anomaly trends); Arctic T and NHT; AMO & PCI (anomaly trend of 

Pacific circulations)

Propagation signal among the indices passed all significance tests
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↑ice

ITCZ South

↑
weste

rli
es

Cold (fresh) 
Atlantic

↑open water

↑ Arctic T

↓ice

↓winds

Atlantic warm, saline.

Warms Eurasia
Intensifies Pacific circulation

↓ ice

ITCZ North

Meridional 
Weaker 

Circulation

Eurasia cools 

Pacific circ slow

End 

negPacific
circ

End of 
+Pacific 

Circulations

Regime shift to warming

Regime shift to cooling

~1918

~1976

~1944

~20??

↓ Arctic T

↑ Arctic T

↑ NHT
NHT

↓
NHT
NHT

Refer to Wyatt and Curry 2014: Role for Eurasian Arctic shelf sea ice in a secularly varying

hemispheric climate signal during the 20th century for mechanistic details.

Eurasian Arctic Sea Ice

Relationship with Atlantic

Relationship with Winds

ITCZ Migrations

Max NHT, Min Sea Ice, North ITCZ

Min NHT, Max Sea Ice, South ITCZ

Pacific feedback to Atlantic

Pacific Anomaly Trend and AMO

Next Step:

Probe History

Example: ~1918 min NHT, AMO = regime shift to warming trend

Then in ~ 1940, NHT and AMO at max = regime shift to cooling trend

Later in 1976, NHT and AMO min again, shift to warming.

Early 2000s (???) shift to cooling trend???

Note: shifts in index trends are not the same as shifts in anomaly polarity. This can be confusing 
when “regime shifts” are discussed.  ExEx. AMO begins warming trend from its minimum value ~1918 
and continues to its maximum, about 1942, when it then reverses to a decreasing trend. Yet, if 
described in terms of polarity of anomalies, warm AMO anomalies begin ~1930 and continue in that 
polarity until ~ 1962, then switching to negative polarity until ! 1990, etc. [Refer to page/slide 19.]
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MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linear Detrend

13y Smooth

3rd Order

M-SSA

Correlations
Significance Tests

STEP ONE:

STEP TWO:

20thc

“extended data set”

“dynamic” proxies

1700-2000

3rd Order
M-SSA

Correlations
Significance Tests

“conventional”proxies 

“dynamic” proxies

document

mechanism

history •Tree rings

•isotope ratios from 

ice, corals

•historical 

documentation

Proxy data used with same methodology as used on observational data.
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-N H T (Jo nes)

-A M O (G ray)

N A O (Lutebacher)

P D O  (S hen)

““ConventionalConventional”” Proxy Replacements 1900 to 2000Proxy Replacements 1900 to 2000

M-SSA RCs of leading modes one & two

Statistically Significant p<5%

From ProxyCompilation20c_w_Replacements.m for 20c

Need to use proxies. Assess if proxies show similar behavior for 20th c. Statistical 

significance excellent on all measures for this collection for 20thc. Now test further 

back in time.
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-NHT(Esper)

-AMO(Gray)

NAO(Lutebacher)

PDO (DArrigio)

Proxy Replacement 1700 to 2000Proxy Replacement 1700 to 2000

M-SSA RCs of leading modes one and two

Not significant at p<5%

No significance. Proxy quality? Noisy? Or No signal?

From ProxyCompilation_1700_2000_revised_infill 
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MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linear Detrend

13y Smooth

3rd Order

M-SSA

Correlations
Significance Tests

STEP ONE:

STEP THREE

STEP TWO:

20thc

“extended data set”

“dynamic” proxies

1700-2000

20thc   

pre-ind

3rd Order
M-SSA

Correlations
Significance Tests

“conventional”proxies

“dynamic” proxies

2nd Order
M-SSA

Significance Tests

CMIP3 data

document

mechanism

history

Signal 
simulation

DJFM all indices

Running ConclusionRunning Conclusion
(Step Two: 3rd order analysis)

20thc stadium wave

All proxies

1850-2000

Significant (not shown)

Prior to 1850

“Signal”, yet amplitude, frequency modifications

Significance not identified

No signal? Or diminished quality of proxy data? Or other?

Next Step:

Model-Data Simulations

CMIP3 data base of raw variables

Reconstructed indices: All indices linearly detrended and normalized 

prior to analysis

NHT, AMO, NAO, NINO3.4, PDO, NPO, ALPI

20th century

Pre-industrial
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RC Number Group Periodicity Model Experiment Run
Significant with 

Annual Sampling

Significant with 

Sampling @ 5y 

Running Mean

Comments Related to 

Signal Propagation or 

Other Behavior

1 single ~70y CCCMA_cgcm3 20c 1 yes no

1,2 pair bi-annual CNRM_cm3 20c 1 yes no

3 single ~25y CNRM_cm3 20c 1 yes no

3 single subdecadal CSIRO_mk3 20c 1 yes no

5 single subdecadal CSIRO_mk3 20c 1 yes no

6,7 pair bi-annual CSIRO_mk3 20c 1 yes no

1 single ~70y CSIRO_mk3 20c 1 no yes

1,2 pair ~35y *GFDL_2_0 20c 1 marginal yes no propagation

1,2 pair ~35 GFDL_2_1 20c 3 no marginal  no propagation

1 single 100y IAP_fgoals_1_0_g 20c3m 1 yes yes

2,3 pair biannual IAP_fgoals_1_0_g 20c3m 1 yes no non-stationary behavior

1 single interannual MIUB_echo_g 20c 2 yes

1 single ~60y MIUB_echo_g 20c 2 yes

2 single ~60y MIUB_echo_g 20c 2 yes no

3 single ~25y MIUB_echo_g 20c 2 yes no

3 single ~55y UKMO_hadcm3 20c 1 marginal no

1 single ~50y CNRM_cm3 control 1 no marginal

2 single ~25y CSIRO_mk3 control 1 no yes

1 single ~55 to 75y GFDL_2_0 control 1 n/a yes

2 single ~25y GFDL_2_0 control 1 n/a yes

No No 

““Stadium Stadium 

WaveWave””

Signal Signal 

Detected Detected 

in CMIPin CMIP
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SummarySummary

• Hypothesis: Low-frequency climate signal propagates  
across NH

• Tested : M-SSA cornerstone of analysis techniques
– 20th century Instrumental Data

• Documentation of Signal

• Explore Mechanism

– Proxy Data: 1700-2000
• Probe History

– CMIP3 Model-Generated Data: 20thc and pre-industrial
• Model Reproduction?

• Results:
– A statistically significant low-frequency climate signal 

propagates through network of indices 20thc
• Ocean-ice-atmospheric coupling 

– Proxies show signal: 1850 (significant) and to 1700 (with 
statistical uncertainty)

– Models do not reproduce signal

Running ConclusionRunning Conclusion
(Step Three: 2nd order analysis)

No stadium wave signal in Model-Simulated Data

Speculation on reason

Signal could be random

Models could have deficiencies in representing features vital to behavior on 

multi-decadal time scale

Sea-ice

COAs

Western-boundary currents and interaction with atmosphere
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Interpretation/ThoughtsInterpretation/Thoughts

• Step One 20th Century Instrumental Data
• Statistics can not “prove”. 

• Need mechanism.

• Literature support for “links”

– Highlight deep, interactive ocean 

– COA position, migration

– Western-boundary currents/extensions

• Step Two: 1700-200 Proxy Data
• Not statistically significant prior to 1850:

– Could mean no signal

– Could mean proxy data too noisy 

• Step Three: model-generated Data
– No signal with statistical significance, frequency, or propagation 

characteristics of stadium-wave signal

• Critical links not well-modeled: 

– COAs

– Sea-ice, especially motion and export

– Western-boundary currents
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Outstanding Questions:Outstanding Questions:

• What explains the signal’s absence of statistical 

significance in proxy data prior to1850?

• Does sea ice influence the climate signal’s sensitivity?

• Why do models not simulate the signal?
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Signal Propagation & Synchronized Networks

THE ENDTHE END
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Miscellaneous 
Extras follow
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ChannelChannel--Fraction of RawFraction of Raw--Index VarianceIndex Variance

Channel-variance fractions due to M-SSA 1&2

How much variability in an index can be “explained” by the M-SSA signal?

Bootstrap procedure done initially to ensure signal was not only in one or two 

indices. All indices indicated an expression of this signal. Some indices reflect the 
signal more than others. Those indices that are dominated by higher-frequency 

behavior tend to have less of their total variability “explained” by the signal than 

those indices with more “memory”, and therefore low-frequency behavior. 
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7 Indices 7 Indices 

added to  added to  

Index Index 

NetworkNetwork

Note: Atlantic 
Meridional Mode 
(AMM) is plotted 
below in negative 
polarity.

Missing data infilled. Same results of significance. Signal found in all, with fractional 

variances differing among indices. In particular, OHC700 in Pacific strong presence 
(Coincides w/ AT). OHC300 more closely affiliated with NAO. PNA traces same 

path as PDO, no surprise.
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Running Conclusion Running Conclusion 
(Step One: 2nd order analysis)

• Statistical Results

– Climate signal documented

– Significance 95%

• Speculation

– Tempo

– Feedback

• Cautionary Note

• Next Step:

– Explore Mechanism

Secular-scale variability 20thc

Propagates through atmospheric-oceanic indices

Warm Atlantic → Cool hemispheric T ~ 32y later

Cool Atlantic →Warm hemispheric T ~ 32y later

Important: while cannot claim a statistically significant periodicity was identified, what is significant is the fact that the mode of 
variability was found in each index. The indices represent geographically diverse regions. The expression of the signal 
occurs in one, followed by another, and then another – suggestive of conveying predictive capacity.

Need Further Analysis/More Data Sets

Atlantic (tempo and atmospheric response):AMOC sets AMO tempo: (interdecadal to multidecadal results: closest to 
observation of ocean tempo and winter atmospheric circulation deep or interactive ocean (Knight et al. 2005; Msadek et al. 
2010b). 

Bjerknes compensation (Bjerknes 1964) long-term TOA radiative balance fairly constant, and so is total polar heat transport 
accomplished by ocean and atmosphere. When one vehicle weakens, the other strengthens. Model studies: Shaffrey and 
Sutton (2006) and Van der Swaluw et al. (2007) support w/ max expression 60-80N on decadal timescales and longer.

Signal ocean to atmosphere: response of atmosphere to heat source in wbc (Kelly and Dong 2004; Dong and Kelly 2004; 
Kelly 2004). Positive reinforcing feedback on SSTA through ocean modification via atmospheric circulation overhead (Palmer 
and Sun 1985; Latif and Barnett 1994, 1996; Rodwell et al. 1999; Latif et  al. 2000; for examples). Details of response 
sensitive to location of heat source w/ respect to mid-latitude storm track (Peng et al. 1997; Peng and Whittaker 1999; Peng 
and Robinson 2001; Czaja and Marshall 2001; Peng et al. 2002; Nakamura et al. 2004; Xie et al. 2004; Minobe et al. 2008). 
Model results are inconsistent (Msadek et al. 2010b). 

Signal Atlantic to Pacific: Numerous models; inconsistent results. Longitudinal and latitudinal migrations of COAs 
(atmospheric) govern circumpolar communication of regionally generated climate signals (Kirov and Georgieva 2002; 
Polonshky et al. 2004; Grosfeld et al. 2006; Dima and Lohmann 2007; Msadek et al. 2010b). Interbasin connectivity (Wang 
et al. 2007), where Pacific ALPI dominated by ENSO during global cool regimes and is not dominated by it during warm, 
when mid-latitude circulation more influential. Enhanced PNA and eastwardly extended jet due to AL shift to south and east. 
PNA intensification and area coverage connects up and down stream.

Lat/lon shifts strongly influence NPO/WP (Sugimoto and Hanawa 2009; Frankignoul et al. 2011) and have been shown to 
influence interdecadal-scale migrations of wbc extensions (oceanic gyre frontal boundaries), w/ impact on ocean dynamics 
and ocean-atmospheric interaction (Kwon et al. 2010 and Frankignoul et al. 2011) Latitudinal shifts in ITCZ involved in 
Atlantic to Pacific communication at low latitudes, as proposed by Vellinga and Wood 2002; Vellinga and Wu 2004; Vimont 
and Kossin 2007). Multidecadal changes in tropical Pacific may further modify. Atlantic response to Pacific, for example (Latif 
et al. 2006 (atmospheric bridge)). Schmittner et al. 2000 and Niebauer 1998 both discuss Pacific remote influence on 
freshwater balance in Atlantic, and therefore influence on thermohaline circulation. Arctic/Atlantic freshwater exchange 
related to position of COAs (Dima and Lohmann 2007; Frankcombe and Dijkstra 2011). Kwok et al. 2011 discusses COA 
placement of Arctic High and effect on sea-ice extent.

Observation of NPO and NAO co-varying as proposed result of NAM (Chao and Au (2001?) (personal communication and 
paper)). Hurrel and van Loon 1997; Thompson et al. 2000 have observed. Van Loon has discussed (Greece presentation).
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MethodsMethods

2nd Order

M-SSA
Significance Tests

“original 8”

“complementary 7”

1st Order
Linear Detrend

13y Smooth

3rd Order

M-SSA

Correlations
Significance Tests

STEP ONE:

20thc

“extended data set”

“dynamic” proxies

document

mechanism

DJFM all indices,
where possible

Added Indices:

Arctic T

Eurasian Arctic Shelf sea ice

Atlantic SSTA Dipole

Pacific Circulation Index (PCI), 

Running Conclusion Running Conclusion 
(Step One: 2nd order analysis)

Statistical Results

Climate signal documented

Significance 95%

Speculation

Tempo

Feedback

Cautionary Note

Next Step:

Explore Mechanism



38

38

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0

1 0

2 0

3 0

4 0

5 0

6 0
C h a n n e l-v a ria n c e  f ra c tio n s  d u e  to  M -S S A  1  a n d  2

F
ra

c
ti
o

n
 (

%
)

- A r c T ng LOD -NHT GB -A MO Ic eT o t A T NPGO ngSo l NA O NINO JS NPO PDO A LPI

Channel-Fraction Variance of Select 

Indices from Original plus Arctic 
Variables and Dynamic Proxies



39

39

Running Conclusion:Running Conclusion:
(Step One: 3rd order analysis)

• Eurasian Arctic Sea Ice

– Relationship with Atlantic

– Relationship with Winds

• ITCZ Migrations

– Max NHT, Min Sea Ice, North ITCZ

– Min NHT, Max Sea Ice, South ITCZ

• Pacific feedback to Atlantic

– Pacific Anomaly Trend and AMO

• Next Step:

– Probe History

Atlantic Ocean strong influence on sea ice

Sea ice affects meridional temperature gradient (MTG)

MTG triggers atmospheric response

Atmospheric response plays back on ice/ocean Atlantic variability and PCI

Cumulative impact of Pacific circulations

Remote influence of Pacific circulations on Atlantic 

Sequence:ocean-ice-atmospheric indices

Cool Atlantic coincides with Eurasian Arctic shelf-sea ice (landfast ice included), 
especially the Western Eurasian Arctic Ice (Greenland, Barents, and particularly 

Kara. 30W to 110E). Most significant control on sea-ice growth = low salinity (and 

cool); affects far more than overlying T. (Frolov et al. 2009 and references w/n; 

Zakharov and Malinin (2000) p 5,6. 

Increase in Arctic ice decreases Arctic T and increases MTG, leads to atmospheric 

heat flux low to high latitudes NH. Forms planetary air flow west to east. (Frolov). In 

turn, atmospheric flow influences ice-motion dynamics = convergence, ridging, 
leading to open water, which then allows considerable flux to atmosphere. This 

reduces the MTG and with it, the atmospheric and heat transport associated with it. 

The freshwater export related to COA placement as a result of changed 

atmospheric circulation generates multidecadal Rossby salinity cycle in Arctic, 

influencing salinity balance of North Atlantic high latitudes. In addition, there is 
feedback on Atlantic from Pacific.

Pacific circulations
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Running ConclusionRunning Conclusion

(Step Two: 3rd order analysis)

• 20thc stadium wave
– All proxies

• 1850-2000
– Significant (not shown)

• Prior to 1850
– “Signal”, yet amplitude, frequency modifications

– Significance not identified
• No signal? Or diminished quality of proxy data? Or other?

• Next Step:
– Model-Data Simulations
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Running ConclusionRunning Conclusion
(Step Three: 2nd order analysis)

• No stadium wave signal in Model Data

• Speculation on reason

– Signal could be random

– Models could have deficiencies

• Sea-ice

• COAs

• Western-boundary currents

Van de Berge supermodel (variables exchange information). Better results than 

model-ensemble averages and much better than any individual models.


