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Abstract Structural equation modeling is used in statistical applications as both confirmatory and
exploratory modeling to test models and to suggest the most plausible explanation for a relationship
between the independent and the dependent variables. Although structural analysis cannot prove causation,
it can suggest the most plausible set of factors that influence the observed variable. We apply structural
model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most
effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by
subtracting the effects of natural forcing and variability from the observed temperature. We find that
anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation
internal mode dominate Arctic temperature variability. Our structural model analysis of observational data
suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

1. Introduction

The influence of the Atlantic Ocean on the Arctic as well as on global climate has been long recognized. One of
the signatures of the current multidecadal warming period is that the Arctic has been warming at a faster pace
than the global average. Although this Arctic amplification has been discussed for some time, its origin is not
yet fully understood [Chylek et al., 2009; Holland and Bitz, 2003; Serreze and Francis, 2006; Serreze et al., 2009;
Screen and Simmonds, 2010; Lesins et al., 2012; Taylor et al., 2013; Pithan and Mauritsen, 2014; Zhang et al., 2007].
In spite of a significant progress in model development, the interplay between radiative forcing due to the
increasing concentration of greenhouse gases and the dynamical variability of the complex atmosphere-ocean
system remains unresolved. The Intergovernmental Panel on Climate Change Fifth Assessment Report
(IPCC AR5) of 2013 lists natural climate variability as one of the possible causes responsible for the recent slower
rate of warming than predicted by climate models. A significant multidecadal scale natural variability signal
may be superimposed upon the warming due to greenhouse gases [DeSol et al., 2011; Wallace et al., 2012;
North, 2012] that could dampen or amplify the latter. The separation of anthropogenic changes and natural
climate variability in the observed record remains a challenging problem that is critical to model projections of
impacts in the 21st century. In this report we use regression analysis (structural equation modeling) to isolate
the anthropogenic component in the recent Arctic warming using available observations.

A multiple linear regression analysis has been applied recently to global [Lean and Rind, 2008; Foster and
Rahmstorf, 2011; Zhou and Tung, 2013; Canty et al., 2013; Chylek et al., 2013, 2014] as well as to regional climate
data sets. The set of explanatory variables used included radiative forcing by anthropogenic greenhouse
gases (GHG), anthropogenic aerosols (AER), solar variability (SOL), volcanic aerosols (VOLC), and oceanic
influences characterized by the El Niño–Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation
(AMO). In the following, we use regression and structural model analysis to estimate the anthropogenic
component of the recent (post 1975) Arctic warming.

2. Data Sets

We use NASA Goddard Institute for Space Studies (GISS) Surface Temperature (GISTEMP) temperature time series
derived from observations at meteorological stations (land only) for the region north of 64°N (http://data.giss.nasa.
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gov/gistemp/ for our analysis). We selected the land data only to eliminate any overlap between regions used to
compute the AMO index (North Atlantic) and the mean Arctic temperatures (north of 64°N). In the GISS data,
Arctic regions without meteorological stations and temperature data are filled in by extrapolation from stations up
to 1200km away [Hansen et al., 2007, 2011]. This procedure reduces the potential underestimation of recent
Arctic warming that may occur in some other data sets [Cowtan and Way, 2013].

The observed Arctic temperature (Figure 1a) shows the early twentieth century warming period followed by a
significant midcentury cooling (from 1940 to 1965) and the current warming with the 1985–2012 warming
trend of 0.64 K/decade. The ensemble mean of 108 individual simulations by all the Coupled Model
Intercomparison Project Phase 5 (CMIP5) models (simulation of the 1900–2005 climate complemented by the
2006–2012 representative concentration pathways 4.5 (RCP4.5) projection) fails to reproduce the 1940s peak
in Arctic temperature in spite of a wide range of individual simulations (Figure 1b).

The radiative forcing time series by GHG, AER1, SOL, and VOLC (Figure 2) are from Hansen et al. [2007, 2011],
including updates as described on the NASAGISSwebsite (http://data.giss.nasa.gov/modelforce/Fe.1880-2011.txt).
The ENSO 3.4 index (170°W to 120oW and 5°N to 5°S) is from http://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/Data/nino34.long.data. We consider three different methods of deriving the AMO index (Figure 2): the
first is a smoothed NOAA long series [Kaplan et al., 1998] provided by the NOAA/OAR (Oceanic and Atmospheric
Research)/Earth System Research Laboratory Physical Sciences Division, Boulder, Colorado, USA, at their website
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. The second is the AMO index after Trenberth and Shea
[2006], and the third one is the AMO index as defined by Parker et al. [2007]. The monthly indices are averaged to
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Figure 1. (a) The Arctic temperature anomaly (after NASA GISTEMP data as described in the text) and temperature trends in indicated time intervals. For comparison
the ensemble mean of all 108 simulations by the CMIP5 models (ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, BNU-ESM, CanESM2, CCSM4, CESM1-BGC,
CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, FIO-ESM, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-H,
GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R, GISS-E2-R, GISS-E2-R-CC, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-
CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M, and NorESM1-ME) of the historic twentieth century climate
and the RCP4.5 path is also shown. The temperature anomalies are with respect to 1900–2010 average. (b) CMIP5 ensemble mean and 1 standard deviation of model
simulations (gray). The CMIP5 ensemble mean accounts for 76.2% of the observed Arctic temperature variance (1900–2012). (c) Considered structural model for the Arctic
temperature. Square boxes represent explanatory variables which serve as input into the structural model (STRUCT), CMIP5models, and real climate to produce the observed
temperature T1 andmodeled temperatures T2 and T3. The structural model-simulated temperature T3 is then compared to the observed temperature T1, and the R2adj is used
as a metrics to evaluate efficiency of the model.
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obtain annual values and then normalized to zero mean and unit variance. All data are smoothed further with a 5
year moving average to remove annual fluctuations and to facilitate the isolation of multidecadal-scale variability.

Since the aerosol radiative forcing is relatively uncertain, in addition to the NASA GISS-prescribed aerosol
forcing (AER1), we consider alternate forcings (Figure 2) provided by the IPCC Fifth Assessment Report,
namely, a direct aerosol effect only (AER2), a direct plus indirect forcing (AER5), our own hypothetical forcing
(AER3) simulating the sulfate aerosol decrease since the 1980s, and the aerosol radiative forcing (AER4)
estimated by Mascioli et al. [2012].

The radiative forcing due toGHG andAER are highly anticorrelated. The presence of collinearitymakes it difficult to
separate the effects of the collinear explanatory variables. There are two frequently used solutions to this problem,
either drop one of collinear predictors from the set of explanatory variables or combine the two collinear
predictors into a single predictor. Since we are interested in the combined effect of anthropogenic activities, we
combine the GHG and AER radiative forcings into a single predictor, GHGA, defined as a sum of radiative forcing
due to GHG and AER. The same solution has been adopted by Lean and Rind [2008] and Chylek et al. [2013].

There is also a correlation between the GHG and SOL (r=0.60), which leads to an increased uncertainty of the GHG
and SOL regression coefficients. Although the relative uncertainty of the GHG contribution is expected to be small,
because of this GHG-SOL collinearity, the regression analysis cannot accurately determine the magnitudes of the
solar influence on global or regional temperature variability [Lean and Rind, 2008; Scafetta and West, 2006].

3. Structural Model Analysis

We use a linear structural model as the basic tool in our analysis. The annual mean Arctic temperature is
assumed to have the time-dependent form

T tð Þ ¼ Ao þ A1 GHGA tð Þ þ A2 SOL tð Þ þ A3VOLC tð Þ þ A4 ENSO tð Þ þ A5 AMOþ ε;

where the individual predictors are given by time series described in the preceding section, ε is an error term,
and the expansion coefficients are determined by minimizing the sum of squared residuals.
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Figure 2. (a) The twentieth century radiative forcing due to anthropogenic greenhouse gases (GHG), solar Variability (SOL), volcanic aerosols (VOLC), and different
models of anthropogenic aerosols (AER1 to AER5) described in the text. (b) Observed Arctic temperature variability (red), a regression model of the Arctic
temperature with AER5 aerosol forcing, including a direct and an indirect aerosol effect as prescribed by the IPCC AR5, and different AMO index (after Kaplan = K,
Trenberth and Shea = TS, and Parker = P). (c) Three forms of the AMO index considered in this study and their average. (d) Distribution of Arctic temperature
variability among the predictors. Only GHGA, AMO, and VOLC are statistically significant predictors when AMO is added to the set of explanatory variables.
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Multiple linear regression assumes that the dependent variable (Arctic temperature in our case) can be
written as a linear combination of the explanatory variables, with the expansion coefficients determined by
minimizing the sum of the squared differences between the observed and the modeled dependent variable.
The quality of the model can be evaluated by comparing the square of the multiple correlation coefficients
(R2adj) adjusted for the number of predictors used in a given model [e.g., Wilks, 2006].

Our structural model is shown schematically in Figure 1c. The explanatory variables provide input to the
model which uses regression to find the optimal weightings for the explanatory variables to produce amodel
temperature (T3) that best fits the observational temperature (T1). A comparison of the model and observed
temperatures thus allows a ranking of the effectiveness of different sets of explanatory variables in
reproducing observations. Similarly, the ensemble mean of CMIP5 climate models produces the Arctic
temperature T2 which is then compared with the observed temperature.

We begin our search for the best model with a comparison of two models of the Arctic temperature
variability. The first model includes GHGA, SOL, VOLC, and ENSO as a set of physically plausible explanatory
variables. The second set of predictors is the same but augmented by the AMO. We use the sum of AER
and GHG radiative forcing to produce the combined GHGA forcing used in the above regression equation.
The task is to determine which model best reconstructs the Arctic mean surface air temperature. We find that
the use of alternate aerosol forcings (AER1 to AER5) leads only to minor changes in the regression’s
explanatory power (Table 1); the adjusted R2adj varies between 0.702 and 0.759.

The regression model with all radiative forcings and ENSO accounts for 70.2% to 75.9% of the observed Arctic
temperature variance for the 1900–2012 period (Table 1). With the AMO index added to the set of explanatory
variables, the fraction of the observed temperature variance accounted for increases to 85.3% to 87.1% (Table 1).
However, in this case both the SOL and ENSO predictors become statistically insignificant (the AMO acts as a
mediator in a structural model analysis). When they are deleted from the set of explanatory variables, we are left
with three predictors GHGA, AMO, and VOLC that have essentially unchanged performance accounting for 85.0%
to 87.3% of temperature variance (Table 1), depending on the aerosol model and the AMO used. The minimal
model (a parsimonious model with a high explanatory power and a minimum set of predictors) that uses just
GHGA and the AMO as predictors still accounts for 82.2% to 86.6% of the temperature variance. Adding the AMO
to a set of explanatory variables thus leads to a highly statistically significant (p< 0.01) improvement. The model
with the AMO is clearly superior to one without it. This is in agreement with earlier conclusions [Zhou and Tung,
2013; Chylek et al., 2013, 2014; Canty et al., 2013;Muller et al., 2013] that the AMO is an essential explanatory variable
in both global and regional (in our case the Arctic) climate analysis.

The preceding analysis employed AER1 to AER5 as the aerosol radiative forcing. Although the forcings differ
somewhat (Figure 2a), the results of the regression models with these different aerosol forcings are close to

Table 1. Summary of the Structural Models Used and the Fraction of Arctic Temperature Variance Accounted for Within
the Years 1900–2012a

Case No. Predictors of the Structural Model Explained Variance (%)

Different Aerosols

1 GHGAs+ SOL+VOLC+ ENSO 70.2% to 75.9%
2 GHGAs+ (SOL) + VOLC+ (ENSO) +AMO_K 85.3% to 87.1%
3 GHGAs+VOLC+AMO_K 85.0% to 87.3%
4 GHGAs+AMO_K 84.8% to 86.6%

Different AMOs

5 GHGA5+VOLC+AMOs 85.8% to 87.2%
6 GHGA5+AMOs 82.2% to 86.5%

CMIP5 Models

7 CMIP5 ensemble mean 76.2%

aThe listed results are for aerosol radiative forcings AER1 to AER5 (Figure 2) and the AMO index according to
Kaplan et al. [1998] (AMO_K), Trenberth and Shea [2006] (AMO_TS), and Parker et al. [2007] (AMO_P). Different aerosol
radiative forcing and different AMO indices with the three-predictor (GHGA, AMO, and VOLC) models produce only minor
changes of the model explanatory power from 85.0% to 87.3%. For comparison the fraction of the Arctic temperature
variance accounted for by the CMIP5 ensemble mean (76.2%) is also shown. The results demonstrate the importance
of the AMO in structural climate models and the fact that the AMO is not captured by the CMIP5 ensemble mean of
simulations. Parentheses indicate statistically insignificant predictors.
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each other (Table 1). In the following, we use AER5 (aerosol radiative forcing including a direct and an indirect
aerosol effect according to the IPCC AR5) as representative of the aerosol radiative forcing. A limitation of
our aerosol treatment is that it represents the global mean forcing, and so does not account for any local
effects due to spatially inhomogeneous aerosol distributions which may affect the forcing in the Arctic
[Shindell and Faluvegi, 2009; Flanner, 2013; Sand et al., 2013].

4. The AMO as an Explanatory Variable

The origin of the AMO [Schlesinger and Ramankutty, 1994] is not yet fully understood [Knight et al., 2005; Dima
and Lohmann, 2007; Chylek et al., 2009; Frankcombe and Dijkstra, 2011; Gulev et al., 2013]. Some models
simulate the twentieth century AMO-like temperature variability by a strong aerosol effect [Booth et al., 2012],
which may not be consistent with observations [Zhang et al., 2013; Chylek et al., 2014]. Extensive research
[e.g., Parker et al., 2007; van Oldenborg et al., 2009; Mahajan et al., 2011] suggests that the basic multidecadal
AMO cycle is connected to the Atlantic Meridional Overturning Circulation. The AMO has been implicated
in regional climate variability [e.g., Folland et al., 1984, 1986; Polyakov and Johnson, 2000; Chylek et al., 2013],
and AMO proxy data [Delworth and Mann, 2000, Gray et al., 2004, Chylek et al., 2011, 2012] suggest that
the AMO has persisted for many hundreds of years, indicating a high probability that it is a natural mode
rather than a recent anthropogenic effect.

The use of the AMO as an explanatory variable in the analysis of the Arctic climate is also supported by the
hypothesized “stadium wave” [Wyatt et al., 2012;Wyatt and Curry, 2013], which propagates the climate signal
across the Northern Hemisphere through a network of synchronized ocean, ice, and atmospheric indices. As
the stadium wave propagates through the index network, the multidecadal time-varying component of
Arctic surface air temperature evolves in close association with the AMO. Sea ice in the West Eurasian Arctic,
particularly in the Barents and Kara Seas, is assumed to be the link that connects the AMO to Arctic
temperatures. Sea ice extent in this region, where Arctic ice is uniquely exposed to open ocean, is largely
governed by the AMO, the positive phase of which governs the inflow of warm, saline water into the West
Eurasian shelf seas [Bengtsson et al., 2004; Polyakov et al., 2004, 2005, 2010]. Sea ice cover regulates ocean
heat flux to the atmosphere, the effects of which strongly influence Arctic surface temperature. The AMO
and sea ice in the Eurasian Arctic sustain the stadium wave signal propagation, thereby imprinting the
decadal-scale variability on the Arctic surface air temperature [Wyatt and Curry, 2013]. Additional justification
for use of the AMO as an explanatory variable has been presented recently elsewhere [Zhou and Tung, 2013;
Canty et al., 2013; Chylek et al., 2013; Muller et al., 2013].

On the other hand, since the AMO is related to the mean sea surface temperatures of the North Atlantic,
which is a regional time series, its role as an independent explanatory variable may be questioned. However,
there is observational evidence that in themidlatitude North Atlantic and on time scales longer than 10 years,
surface turbulent heat fluxes are indeed driven by the ocean and force the atmosphere [Gulev et al., 2013].
Thus, on the longer times cales of interest in our study (decadal and more), the evidence shows that the
energy flow is predominantly from ocean to atmosphere, in support of the use of the AMO as an explanatory
variable in regressionmodels. Furthermore, we have used land-only Arctic temperature data in our analysis to
minimize the aforementioned cross contamination (confounding in statistics).

We underscore the key result of our analysis that the regression model with just two (GHGA and the AMO)
explanatory variables is able to account for up to 86.6% (R2adj = 0.866) of the observed Arctic temperature variance.
Neither the AMO nor the GHGA forcings can be excluded from any regression model without a significant loss of
accuracy in reconstructing the observed 1900–2012 Arctic temperature variability.

5. Anthropogenic Components of the Arctic Warming

The Arctic temperature variability is dominated by global radiative forcing due to greenhouse gases and
aerosols (GHGA) and by the AMO (Figure 2d). The partitioning of the variability among the GHGA and the
AMO does not change significantly between the models as long as the two significant predictors (GHGA and
AMO) are present.

In order to isolate the anthropogenic components of the Arctic warming, we follow the procedure suggested
earlier [Foster and Rahmstorf, 2011; Zhou and Tung, 2013] of subtracting the effects of all known forcings
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except the anthropogenic (GHGA)
from the observed temperature
variability. The result of this procedure
depends slightly on how the AMO
index is defined. The AMO index
provided by NOAA is based on a
linearly detrended North Atlantic SST.
Instead of a linear detrending,
Trenberth and Shea [2006] subtract the
global mean SST to derive the AMO
index, while Parker et al. [2007]
identified the AMO as the third EOF
(empirical orthogonal function) in the
worldwide SST. By averaging the
anthropogenic warming obtained with
these three cases of the AMO index,
we find the anthropogenic warming
rate from 1955 to 2012 to be

0.27 K ± 0.04 per decade (Figure 3) and 0.31 ± 0.02 from 1985 to 2012. Here 1 standard deviation, taken as the
uncertainty, is based on the three different AMO choices. Our results suggest that only about half of the
recent (1985–2012) Arctic warming (of 0.64 K/decade) may be due to anthropogenic causes.

6. Summary and Discussion

The addition of the AMO index to the set of commonly used explanatory variables (radiative forcing due to
greenhouse gases and anthropogenic aerosol (GHGA), volcanic eruptions (VOLC), solar variability (SOL), and
the ENSO index) increases the fraction of Arctic temperature variance (1900–2012) accounted for from
70–76% to 85–87%. This increase is highly statistically significant (p< 0.01), which indicates that a model of
the Arctic temperature which includes the AMO is significantly better than a model without it. For
comparison, the CMIP5 ensemble mean (Figure 1) accounts for 76% of the Arctic temperature variance.

In our analysis, we use the Arctic temperature data (north of 64°N) from the NASA GISS. Data from the early
part of the twentieth century have a large uncertainty due to the small number of meteorological stations
operating during that time. To show how our results may be affected by this uncertainty, we have repeated
our analysis using a temperature data set starting in 1930 (instead of 1900 in our full analysis) when the
number of stations had significantly increased. Using this shorter time series, we find the 1985–2012 trend of
the anthropogenic Arctic warming to be 0.32 K/decade, compared to 0.31 K/decade found earlier. Thus, the
uncertainty of the early data does not affect our model suggestion that only about half of the observed
recent Arctic warming (0.64 K/decade) can be attributed to anthropogenic influences.

The anthropogenic component of the Arctic warming was estimated by subtracting the natural variability
(solar variability, volcanic eruptions, ENSO, and AMO) from the observed Arctic temperature [Foster and
Rahmstorf, 2011; Zhou and Tung, 2013]. We find the recent (1985–2012) rate of anthropogenic Arctic warming to
be 0.31K±0.02K per decade. Since the Arctic has warmed in recent decades at the rate of about 0.64K/decade,
our results suggest that about half of the observed recent Arctic warming trend could be attributed to
anthropogenic causes.

The regression analysis and structural modeling is based on correlations between the explanatory and the
dependent variables. It uses long-term observables that reflect known and unknown processes in our
coupled climate system as well as the driving forces, both anthropogenic and natural. Such empirical analysis
can suggest feasible causal links, but it cannot prove causation that will require process-based climate
modeling studies. Although an effort has been made to expand structural modeling to include causation
[Pearl, 2000, 2003], the process has not yet been generally accepted and used.

While the model we use is based on statistical correlations, it accounts for 87% of the observed Arctic
temperature variance (considerably higher than the 76% accounted for by the ensemble mean of CMIP5
model simulations). The AMO provides a reasonable first-order estimate of the influence of the large-scale
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oceanic circulation on decadal and multidecadal time scales. Ultimately, a first-principle model based on
relevant physical processes will be necessary for a more definitive account of the Arctic temperature history.
In the meantime, a statistical approach such as that presented here can help guide the selection of important
processes not yet captured by existing climate models.
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