Multidecadal Climate Variability

Signal Propagation across the Northern Hemisphere

How Something is Viewed Determines What Can be Seen!

How well can we understand a system by "viewing" only its parts?

A network's ultimate expression is not merely a sum total of its parts.

Viewing Climate as a Network

Network = a collection of interacting "parts"

In its simplest form, a network is a collection of nodes joined by edges

Physics Today Nov '08

Each Node = Self-Sustained "Oscillator"

Self-sustained Oscillators Can be Synchronized

SYNCHRONIZATION

Individual Self-Sustained "Oscillators"

Interact

Adjust

Share Tempo

Self-Organizing

Beyond Synchrony

"Stadium-Wave Signal"

Local Coupling \rightarrow Signal Propagation

12

Hypothesis

Propagation of a low-frequency climate-signal through a network of atmospheric, Ice, and oceanic self-sustained oscillating indices

"Real Time" timeseries: +NHT, -AMO, NAO, NPO, PDO

A 'mess', yet lagged, synchronized relationships suggested, prompting further investigation

Random Red-Noise? or Coherent Signal?

-AMO (4y) +NAO (8y) +PDO (4y) +ALPI

•Lagged correlations of multidecadal signal in various indices

•Conclude possibility of signal

•Need tool that detects lagged relationships

Multichannel Singular Spectrum Analysis

Propagating Signals

- 1) Individual Time Series Extended
- 2) Covariance Matrix
- 3) Shared Variability
- 4) Plot means of mode variance

M-SSA Plots

RCs for Modes of Variability

RCs for Modes of Variability

Marcia Glaze Wyatt 2012

Eurasian Arctic Shelf Seas

"West Ice"

Marcia Glaze Wyatt 2012

Ocean-Ice-Atmosphere Interactions

"Conventional" Proxy Replacements 1900 to 2000

Statistically Significant p<5%

Proxy Replacement 1700 to 2000

M-SSA RCs of leading modes one and two

For the interval 1850 to 2000, statistical significance p<5%, but not for longer time series of these proxies, which are inherently 'noisy'.

Using Alternate Proxy Data: 1700-2000

See text for explanation of these proxy indices

RC Number	Group	Periodicity	Model	Experiment	Run	Significant with Annual Sampling	Significant with Sampling @ 5y Running Mean	Comments Related to Signal Propagation or Other Behavior
1	single	~70y	CCCMA_cgcm3	20c	1	yes	no	
1,2	pair	bi-annual	CNRM_cm3	20c	1	yes	no	
3	single	~25y	CNRM_cm3	20c	1	yes	no	
3	single	subdecadal	CSIRO_mk3	20c	1	yes	no	
5	single	subdecadal	CSIRO mk3	20c	1	yes	no	
6,7	pair	bi-annual	CSIRO_mk3	20c	1	yes	no	
1	single	~70y	CSIRO_mk3	20c	1	no	yes	
1,2	pair	~35y	*GFDL_2_0	20c	1	marginal	yes	no propagation
1,2	pair	~35	GFDL_2_1	20c	3	no	marginal	no propagation
1	single	100y	IAP_fgoals_1_0_g	20c3m	1	yes	yes	
2,3	pair	biannual	IAP_fgoals_1_0_g	20c3m	1	yes	no	non-stationary behavior
1	single	interannual	MIUB_echo_g	20c	2	yes		
1	single	~60y	MIUB_echo_g	20c	2		yes	
2	single	~60y	MIUB_echo_g	20c	2	yes	no	
3	single	~25y	MIUB_echo_g	20c	2	yes	no	
3	single	~55y	UKMO_hadcm3	20c	1	marginal	no	
1	single	~50y	CNRM_cm3	control	1	no	marginal	
2	single	~25y	CSIRO_mk3	control	1	no	yes	
1	single	~55 to 75y	GFDL_2_0	control	1	n/a	yes	
2	single	~25y	GFDL_2_0	control	1	n/a	yes	

No "Stadium Wave" Signal Detected in CMIP

Marcia Glaze Wyatt 2012

<u>Summary</u>

- <u>Hypothesis</u>: Low-frequency climate signal propagates across NH
- <u>**Tested</u>** : M-SSA cornerstone of analysis techniques</u>
 - <u>20th century Instrumental Data</u>
 - Documentation of Signal
 - Explore Mechanism
 - <u>Proxy Data: 1700-2000</u>
 - Probe History
 - <u>CMIP3 Model-Generated Data: 20thc and pre-industrial</u>
 - Model Reproduction?

• <u>Results:</u>

- A statistically significant low-frequency climate signal propagates through network of indices 20thc
 - Ocean-ice-atmospheric coupling
- Proxies show signal: 1850 (significant) and to 1700 (with statistical uncertainty)
- Models do not reproduce signal

Interpretation/Thoughts

- <u>Step One 20th Century Instrumental Data</u>
 - Statistics can not "prove".
 - Need mechanism.
 - Literature support for "links"
 - Highlight deep, interactive ocean
 - COA position, migration
 - Western-boundary currents/extensions

Step Two: 1700-200 Proxy Data

- Not statistically significant prior to 1850:
 - Could mean no signal
 - Could mean proxy data too noisy
- <u>Step Three: model-generated Data</u>
 - No signal with statistical significance, frequency, or propagation characteristics of stadium-wave signal
 - Critical links not well-modeled:
 - COAs
 - Sea-ice, especially motion and export
 - Western-boundary currents

Outstanding Questions:

- What explains the signal's absence of statistical significance in proxy data prior to1850?
- Does sea ice influence the climate signal's sensitivity?
- Why do models not simulate the signal?

Signal Propagation & Synchronized Networks

THE END

Marcia Glaze Wyatt 2012

Miscellaneous Extras follow

Channel-Fraction of Raw-Index Variance

How much variability in an index can be "explained" by the M-SSA signal?

7 Indices added to Index Network

Note: infill of gapped data via MSSA.

See text.

40

Running Conclusion

(Step One: 2nd order analysis)

<u>Statistical Results</u>

- Climate signal documented
- Significance 95%

Speculation

- Tempo
- Feedback

<u>Cautionary Note</u>

- <u>Next Step</u>:
 - Explore Mechanism

Channel-Fraction Variance of Select Indices from Original plus Arctic Variables and Proxies

Marcia Glaze Wyatt 2012

Running Conclusion: (Step One: 3rd order analysis)

Eurasian Arctic Sea Ice

- Relationship with Atlantic
- Relationship with Winds

ITCZ Migrations

- Max NHT, Min Sea Ice, North ITCZ
- Min NHT, Max Sea Ice, South ITCZ

Pacific feedback to Atlantic

Pacific Anomaly Trend and AMO

Next Step:

Probe History

Running Conclusion

(Step Two: 3rd order analysis)

- 20thc stadium wave
 - All proxies
- <u>1850-2000</u>
 - Significant (not shown)
- Prior to 1850
 - "Signal", yet amplitude, frequency modifications
 - Significance not identified
 - No signal? Or diminished quality of proxy data? Or other?
- <u>Next Step</u>:
 - Model-Data Simulations

Running Conclusion

(Step Three: 2nd order analysis)

- No stadium wave signal in Model Data
- Speculation on reason
 - Signal could be random
 - Models could have deficiencies
 - Sea-ice
 - COAs
 - Western-boundary currents