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I. Introduction 
The observed Northern Hemisphere surface-average temperature trend over the last 100-

plus years has increased non-uniformly, its trajectory marked by multiple-decade 

intervals of strong warming alternating with multiple-decade intervals of stalled warming 

or slight cooling. Similar behavior emerges in proxy data dating back several centuries 

(e.g. Black et al. 1999; Gray et al. 2004). A question of attribution emerges. What is the 

source of this non-uniformity? Does the climate system’s intrinsic
1
 variability influence 

this low-frequency pattern or are external forcings - both natural and anthropogenic - 

dominantly in charge?  

 

It is the envisioned relative roles of these two components – intrinsic (I) and forced (F) – 

that underpin fundamental and divergent views on climate and its sensitivity to external 

influences. One school-of-thought views multidecadal-scale climate variability as being 

dominated by external radiative forcing – partly natural, partly anthropogenic - with 

minimal contribution from the intrinsic component. The other school-of-thought sees a 

significant role for intrinsic dynamics in multidecadal climate behavior.  

  

For some, these contrasting views regarding forced and intrinsic signals motivate efforts 

to disentangle the two components so that their relative roles in observed climate 

variability can be identified. Yet not all research is driven by similar incentive. Some 

research attempts to separate natural contributions from anthropogenic; while other 

research targets timescale of behavior, and potential relationships among processes 

exhibiting similar timing. These distinctions in research goals drive selection of 

strategies.   

 

There is nothing inappropriate about this tendency for one’s study focus to influence 

choice of methodology; it is this way because different techniques emphasize different 

features and/or dynamics within a data set. Regardless of the analytical strategy used, 

problems exist. For example, coverage – both temporal and spatial – is far from ideal in 

long-term climate records. Data sets are more a moving target than a solid representation 

of past events. There are observational surface-temperature data sets, none of which 

resemble their original versions. They all have been corrected, modified, and altered 

numerous times – sometimes for obvious reasons; sometimes for less obvious ones. 

Controversy surrounds these records
2
. And for many climate indices, records are too 

short to be informative. One might seek an alternative to counter these limitations. 
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Modeled data offer potential. But again, this depends upon perspective. If it is assumed 

that models well represent all climate dynamics, these data may offer an instructive 

alternative to, or companion to, observational data. Yet which data to use? Each 

individual computer-model design is tuned with a physics package and subsets of 

processes and parameterized features that differ slightly from model to model. Input 

determines output, and the former is based on assumed and/or speculated critical 

dynamics, estimated parameterizations of processes, feedback responses, and overall 

climate sensitivity. Output from each individual model design is unique.  

 

For the present, we narrow our focus to isolating F from I.  

 

The points above highlight obstacles inherent in decomposing a climate signal into its 

intrinsic and forced drivers. Even were we to have access to perfect data, disentangling 

climate components is steeped in complexity. A simple matter of algebra it is not. If we 

were to reason that average surface temperature (Taverage) can be described as a 

combination of a forced (F) component and an intrinsic (I) one, then we are faced with 

two unknowns and one controversial “known” in a three-part equation:  Taverage = F + I, 

where only Taverage is “known”, and only known according to what data set is chosen. If 

our goal is to isolate F from I, the dilemma becomes obvious. 

 

A widely held view is that if one could figure out the exact measure of F, the intrinsic 

component, I, could be ascertained. This assumes the forced component and the intrinsic 

one imprint contrasting signatures. But what if the frequency of the forced signal is the 

same as that of the intrinsic one? Such could be the case with frequency entrainment
3
 of I 

by F. How, then, could one tell the temporal difference between them?  

 

II. Overview: Forced versus Intrinsic – A matter of methods and data? 

While there are many studies that focus on forced and/or intrinsic components, the 

studies on which this present memo is based have introduced novel perspectives on the 

role of internal variability in long-term climate variability, and have identified 

pronounced spatio-temporal differences between observed and model-simulated data.  

 

III. How to interpret low-frequency climate variability:   
Low-frequency behavior is evident in surface temperatures across the Northern 

Hemisphere, with particular focus on sea-surface temperatures (SSTs) in the North 

Atlantic. Instrumental and proxy data of the North Atlantic SSTs reflect a multi-decadally 

repeating pattern. While regularly repeating, it is not strictly periodic (Vincze and Janosi 

2011). This North Atlantic variability has been termed the Atlantic Multidecadal 

Oscillation (AMO: Kerr 2000). Its timescale of variability is thought to be influenced by 

the Atlantic sector’s Meridional Overturning Circulation (AMOC) (Knight et al. 2005) – 

the ocean’s “conveyor belt”: a globally encircling, ponderously paced ocean circulation, 

instrumental in shuttling massive stores of energy along its path, and driven by wind and 

thermohaline processes. Similar timescales of variability have been identified in different 

climate patterns across the Northern Hemisphere (Enfield et al. 2001; Goldenberg et al. 

2001; Sutton et al. 2003; Sutton and Hodson 2003, 2005, 2007; Knight et al. 2006).  
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These observations have spawned speculation that a North-Atlantic born signature 

(AMO) is imprinted on the hemispheric (possibly global (Lee et al. 2011; Feng He 

2013)) climate record. If one assumes a relationship to the AMOC, and if one assumes 

the AMOC to be internally generated, then one might infer the hemispheric (global) 

temperature signature to contain an intrinsic signal. But how much? Herein lies the 

debate: Is the observed low-frequency climate behavior of the AMO forced, intrinsic, or 

both? And if both, in what proportions? 

 

IV. Identifying AMO: What do we want to know? Behavior or Cause? 

Many methods have been used to identify the multidecadal nature of the AMO:  principal 

component analysis (PCA) (Parker et al. 2007), linear detrending (e.g. Enfield et al. 

2001; Knight et al. 2005, 2006, 2009), and differencing (e.g. Mann and Emanuel 2006; 

Trenberth and Shea 2006; Kravtsov and Spannagle 2008; Knight 2009). If the goal in 

applying these methods is to highlight the multidecadal nature of AMO by removing the 

longer-period, secular-scale trend, then linear detrending should serve this purpose. If, on 

the other hand, the goal is to isolate the intrinsic (I) component from the forced (F), no 

method is without weakness (Knight 2009).  

 

In the case of linear detrending, if the forced signal is, itself, time-varying, then a portion 

of it will not be removed in the linearly detrended product. Instead, vestiges of it will 

remain in the residual data, thereby contaminating the residual. Depending on the time-

varying structure of the forced signal, the residual’s amplitude of variability may be 

enhanced or dampened. On the other hand, in the case of differencing, there are various 

versions to consider. In one version, a global signal is subtracted from an Atlantic signal 

(e.g. Trenberth and Shea 2006). In this case, if an Atlantic fingerprint exists within the 

global signal, the risk of overfitting leads to underestimation of the residual, as a portion 

of the Atlantic fingerprint is subtracted from itself. And in differencing versions, where 

modeled terms are used in conjunction with observed data – a semi-empirical approach - 

(e.g. Mann and Emanuel 2006; Kravtsov and Spannagle 2008; Knight 2009), whereby a 

model-estimated forced signal is generated and subtracted from the observed hemispheric 

signal, results of the end-product depend upon the modeled forced signal. Forcing 

profiles, climate sensitivity used to generate them, and successful removal of the model’s 

own internal variability from the simulated data (where applicable) are all subject to 

assumption and uncertainty. All influence the residual, and it is the interpreted character 

of the multidecadal component of that residual – the presumed low-frequency intrinsic 

component - that has ignited debate.  

 

V. Mann et al 2014 – Differencing over detrending, at least for some tasks. 
Mann et al. 2014 address the controversy regarding method choice. They make a 

reasonable case for differencing over linear detrending, if one’s goal is component 

disentanglement.  

 

They make the assumption that the Northern Hemisphere mean surface temperature 

(NHT) is a hybrid of a forced component (F) and an intrinsic (I) one. Relative roles 

remain a question. Mann et al. suggest that an externally forced component, with both 

natural and anthropogenic contributions, dominates; while an internally driven one is 
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minor, with limited geographical reach; its source is assumed to be the North Atlantic, i.e. 

related to the low-frequency component of the AMO.  

 

If the goal is to find support for or against the assumed major role for F, and a 

complementary role for I, we find ourselves back at the dilemma of disentangling F from 

I, both components being unknowns. Guided by the perspective of NHT being dominated 

by the multidecadal timescale of F, Mann et al. estimate F using various models that 

incorporate assumed physics, climate sensitivity, feedbacks, and parameterizations.  

 

To generate these various modeled estimates of the F component projected onto NHT, 

Mann et al. use three approaches; each outcome, slightly different: 1) a simple energy-

balance model; 2) an ensemble-average of runs from one individual computer model 

from the fifth version of the Coupled Model Intercomparison Project (CMIP5); and 3) the 

multi-model ensemble-average of all runs from all individual computer models of the 

CMIP5 collection. These variously model-generated estimates are compared to the 

observed NHT. Mann et al. find their model-estimated F versions all are closely 

correlated to the observed NHT. With this, they move to step two, estimating I - the 

inferred low-frequency intrinsic component projected onto the NHT. 

 

From the observed average-surface Northern Hemisphere temperatures (NHT), they 

difference - or subtract - a model-estimated (F) signal. The residual of this differencing 

procedure is the presumed intrinsic component (I) associated with the particular model-

estimated F signal used in the operation. Smoothing the residual with a 50-year low-pass 

filter generates the low-frequency expression of I. They term this differenced product the 

“AMO”, in reference to the assumed AMOC-driven portion of teleconnected climate 

variability.  

 

To investigate how methodology affects interpretation of an index’s behavior, Mann et 

al. compare their differenced “AMO” to one obtained by linearly detrending the Northern 

Hemisphere mean temperature data, followed by a 50-year low-pass filter. Contrasts 

between “AMOs” emerge: The linearly-detrended-NHT version has greater amplitude 

and ‘biased’ (shifted) phasing when compared to its differenced-AMO counterpart. Mann 

et al note that this is particularly true for recent years – the ‘hiatus’ years. In the mid-

1990s, the “differenced AMO” began decreasing; while the “detrended AMO” peaked 

several years to a decade later.  

 

Keep in mind that in the Mann et al. study, neither the differenced “AMO”, nor the 

detrended “AMO”, are the AMO. In fact, both terms are no more than low-pass-filtered 

by-products of NHT: the former after differencing; the latter after linearly detrending. 

“AMO” and AMO are not one in the same. AMO refers to variations in a sea-surface-

temperature pattern in the North Atlantic. Despite considerable speculation within the 

climate community regarding AMO mechanism, no conclusion has been made on the 

exact nature of its driver, be it intrinsic, forced, or both. Yet Mann et al. use the term 

“AMO” interchangeably with the low-frequency intrinsic signal, I. This synonymous use 

conveys the assumption that low-frequency ocean-circulation patterns in the North 

Atlantic are intrinsic, the influence of which is teleconnected onto the NHT. The degree 
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of that presumed teleconnected intrinsic influence on NHT is the unknown they seek to 

quantify.  

 

Invoking coupled model simulations (Knight et al. 2005) of AMO variability, Mann et al. 

statistically evaluate their two versions of estimated “AMO” and find that of the two 

(differenced and detrended), the variance of their differenced-“AMO” amplitude more 

closely matches the variance derived in the Knight et al. model-AMO experiments. 

Furthermore, evidence is inferred from Mann et al’s model-estimated F; i.e. similarities 

between curves of these F model-estimates and those of the detrended-“AMO”. These 

likenesses suggest to Mann et al. that their detrended-“AMO” curve is driven by vestiges 

of the estimated forced component left behind after detrending, not by an intrinsic 

component.  

 

These lines of evidence suggest to Mann et al. that the differenced-“AMO” is a more apt 

representation of the “true AMO” – i.e. Mann et al.’s I - than is the linearly detrended 

calculation.  This alerts Mann et al. to potential biases in studies that use the detrended 

term: One study, in particular, serves as their example - the “stadium-wave” study. 

 

Mann et al.: Making (stadium) waves: 
Mann et al. cite a study – the “stadium wave” - by Wyatt et al. (2012) to make their point. 

Mann et al. aver that Wyatt et al. detrended raw indices for the purpose of isolating the 

intrinsic component. While this is not the case – Wyatt et al. detrended to remove the 

secular-scale trend, thereby highlighting multidecadal and shorter oscillations - the Mann 

et al. challenge motivated new research that illuminated some worthwhile points.  

 

But first things first – what is the stadium wave? 

 

Not to be confused with a real “wave”, the “stadium-wave” is a nickname, a reference to 

a cheer, of sorts, sent round and round a sports stadium filled with fans who alternately 

raise arms and lower them – passing the “wave” from one section of people to the next. 

As the term applies to climate, it refers to a hypothesized hemispherically propagating 

climate signal – one passed along in a chain-like, lead-lag succession through a 

synchronized network of diverse geophysical indices. This traveling low-frequency 

signal, or “wave”, first documented in 20
th

 century observational data, is geographically 

and sequentially communicated via a “passing-the-baton-like” signal through interactions 

between ocean, ice, and atmospheric patterns. As this signal courses along through the 

various climate processes, the multidecadal component of NHT evolves with alternating 

increasing and decreasing trends. It is this hemispheric multidecadal signal-propagation 

that gives the hypothesis its name – stadium wave. 

 

Dozens of climate and related geophysical indices exhibit this propagation. Its 

hypothesized mechanism (Wyatt and Curry 2014) is well reflected in 20
th

-century 

observed data and the signal is evident in at least 150 years of proxy data (Wyatt 2012). 

Yet Mann et al. claim the propagation, identified as the stadium-wave signal, is no more 

than a false-propagation signal, a statistical artifact – a product of flawed methodology – 

i.e. linear detrending. 
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Mann et al. take the reader through a seemingly well structured argument, but there are 

some assumptions underpinning the assertion that invite additional perspective. 

 

In all this talk of the F and I components projected onto NHT, one might be unaware that 

views diverge on the manifestation of low-frequency intrinsic signals. Views also diverge 

on the ability to disentangle these components. Quantification remains elusive, as 

knowledge on F and I is rooted in assumptions. 

 

In the Mann et al. view, differences among climate indices arise from regional stochastic 

interannual-to-interdecadal processes that imprint a “white noise” signature upon a core 

composition that is common to all indices. That shared common-core composition can be 

explained by the NHT index, as presented by Mann et al. In this construct, NHT is 

assumed to comprise an in-phase, stationary forced signal and an associated low-

frequency intrinsic one related to dynamics of the AMO.  Mann et al.’s study suggests 

that a forced signal impacts all climate indices simultaneously, and a teleconnected 

intrinsic one stamps its low-frequency signal hemispherically with varying impact.  In 

this view, despite the many assumptions involved in estimating F, and assumptions on 

how I teleconnects its signature, the differencing method is a reasonable choice for 

disentangling components.  

 

In contrast to Mann et al.’s view, Wyatt et al. observe that the multidecadal component of 

NHT evolves in concert with an interconnected network of synchronized indices, which 

are hypothesized to have self-organized over time through complex interactions, working 

collectively to re-distribute heat laterally and vertically, from regions of excess to regions 

of deficit – a climate network functioning as a multidecadally paced heat pump, of sorts. 

According to this hypothesis, the AMO sets the multidecadal pace. The hemispheric 

signal-passing, via ocean-ice-atmosphere linkages (Wyatt and Curry 2014), does the rest. 

The pace, or tempo, is linked intimately to the AMO. AMO is likely driven by both 

intrinsic and forced dynamics. The propagation, itself, likely is intrinsic only. Forced and 

intrinsic components are not readily quantified or disentangled in this view.  

 

Keeping the two contrasting views of the ‘I’ component in mind, we return to methods. 

Mann et al. approach the problem by evaluating uncertainties – fluctuations in phasing 

and phase offsets (in terms of years) between plotted index pairs. This is an apt test for 

lead-lag relationships and a good choice to test for robustness of signal propagation.  

 

But there is flaw at the outset. Mann et al. contend that the Wyatt et al. stadium wave is a 

plot of the intrinsic components of climate indices. This is incorrect. It is this 

misconception that underpins the ultimate reason that Mann et al. and Wyatt et al. come 

up with different results: Mann et al. use modeled data and linear detrending to extract 

contaminated I components, that when plotted, generate false “stadium-wave” 

propagation. Conversely, Wyatt et al. use observed data and multivariate techniques to 

extract shared patterns of variability among all network indices. Leading modes of co-

variability are identified; their reconstructed components then plotted. When plotted, the 

reconstructed components generate a “real” stadium wave.  
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Mann et al. have cited linear detrending as the source of purported false propagation. It is 

significant to note the different use of this detrending method between the two studies. In 

Wyatt et al., detrending of each individual observed climate index is a data-preparatory 

first-step used to highlight timescales shorter than century-scale, executed prior to the 

principal step involving collective analysis. In Mann et al., linear detrending of each 

model-simulated index is the principal method in their “stadium wave” analysis. 

 

Mann et al.’s approach:  

 

To test the stadium-wave network of presumed “intrinsic components”, Mann et al. 

create a collection of surrogate climate indices. According to their view that all climate 

indices share NHT at their core, Mann et al. first construct five surrogate NHT indices, 

each consisting of F and I components. 

 

 One part of each NHT is the shared forced signal, which is model-estimated. Mann et al. 

use a simple term-adjustable energy-balance model for this estimate. The second part of 

each NHT is an alternate realization of the low-frequency intrinsic component. This 

synthetic realization is derived through use of a statistical model, which, itself, is based 

on the F-associated “real” I.  

 

To each of the five surrogate NHT indices, Mann et al. add a unique alternate realization 

of Gaussian-distributed white noise to represent index contamination by stochastic 

regional processes. A statistical model is used to generate random realizations. The three-

component end-products are the Mann et al. surrogate stadium-wave network members. 

Each surrogate climate index is linearly detrended, smoothed, and plotted. The detrended 

surrogate indices generate a “stadium wave”, but the propagation signal is statistically 

insignificant, with phasing uncertainties exceeding phase-spreads. Translated, this means 

that with each Monte-Carlo generated “stadium wave”, large phase shifts, varying phase 

offsets, and even different sequence orders among indices, can emerge. This is false 

signal-propagation. Mann et al.’s surrogate “stadium wave” is, indeed, an illusion. Mann 

et al. claim their finding falsifies the Wyatt et al. stadium wave, as well. But does it?  

 

At first glance, it might appear so. But on second glance… It seems not. In fact, it 

appears that the false nature of the Mann et al. “stadium wave” is a result of their single-

step detrend methodology applied to a model-simulated data set.  

 

Methods and data – worth a closer look.  

 

When the differencing technique is applied to Mann et al.’s F + I surrogate climate 

indices, the F component common to all indices is eliminated, and a collection of low-

pass filtered uncorrelated curves, representing the intrinsic component of each index, is 

generated. A plot of these reveals no hint of propagation – false or otherwise. On the 

other hand, when the surrogate climate indices are linearly detrended, vestiges of the 

“wiggly” F component contaminate the residual. The surrogate residuals retain bits and 

pieces of shared F. Hence, plots of these low-pass-filtered, detrended surrogates will all 
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have a similar shape – the characteristic “wiggle” of the model-estimated F – yet with 

offsets in phasing. These phase-shifts are the result of random realizations of the “noise”, 

just as Mann et al. explain.  Indeed, this is how a false stadium-wave is generated. But 

does the same false propagation emerge from observed data and multivariate statistical 

analysis? 

 

Wyatt et al.’s approach: 

 

Wyatt et al. did not assume, nor did they intend, that stadium-wave-network indices were 

intrinsic components. In fact, motivating their research was the quest to understand 

observed shared behavior among numerous spatially and dynamically diverse 

geophysical indices, all beating at a similar multidecadal tempo, yet not in unison. The 

20
th

-century stadium-wave indices – all based on instrumental (observational) data – 

reflected shared timescale of variability. No disentanglement of forced and intrinsic 

components was sought.   

  

In Wyatt et al.’s applied methodology, climate indices are decomposed into temporal 

components. Linear detrending each climate index individually is a minor initial step in 

their strategy; but valuable. It is done for two reasons. One, not all geophysical indices in 

the stadium-wave network have a secular-scale trend. Detrending puts all indices on the 

same footing. Two, for those indices that do have a linearly increasing or decreasing 

component, detrending it eliminates the century-scale signal, highlighting the shorter 

timescales relevant to the stadium-wave study.   Linearly detrended time series are 

analyzed together, as a collection, with Multiple-Channel Singular Spectrum Analysis 

(M-SSA). In this way, timescales of variability shared by all indices can be identified.  

 

In Wyatt et al. and all subsequent stadium-wave studies, M-SSA identified co-variability 

among indices. In observed data, the two leading modes of co-variability among all 

indices exhibited behavior at the multidecadal timescale. This dual-pattern temporal 

component was extracted. An interannual-to-interdecadal residual remained. The 

multidecadal component showed two equally dominant modes of variability of similar 

timescales (~64 years
4
), and in-quadrature with one another, meaning they were 

indicative of an oscillatory pattern at this time scale. These modes, together, are the 

stadium-wave signal. Time series of these two distinct modes are combined into a 

“reconstructed component” (RC) for each index. All reconstructed components are 

plotted. Plotting reveals an ordered, sequential progression of a multidecadally paced 

signal, with offset phasing creating a lead-lag relationship between indices representing 

ocean, ice, and atmospheric processes across the Northern Hemisphere. A mechanism 

explicating each index-to-index coupling is detailed in Wyatt and Curry 2014. 

 

Could different results be due more to different data than to different methodologies? 

Wyatt and Peters 2012 set out to investigate that question. 

 

In 2012, Wyatt and Peters incorporated model-simulated data in their study; yet no 

stadium wave emerged. They used model-generated data from the third version of the 

Coupled Intercomparison Model Project (CMIP3). From the modeled raw variables 
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(SSTs, SLP, etc), climate indices that were used in the original stadium-wave study were 

reconstructed. These simulated indices were then treated exactly like the ‘real’ indices 

used in Wyatt et al. 2012. It was anticipated that these network-indices, constructed from 

model-simulated raw data, would reflect a propagating signal. They did not.   

 

Twenty-one of 22 models were represented (one model output was corrupted 

(http://pielkeclimatesci.wordpress.com/2011/06/28/comments-by-marcia-wyatt-on-cmip-

data/)). Sixty-six runs were processed – the majority with prescribed “business as usual” 

CO2 increase; a few runs were pre-industrial control runs. None of the 66 runs produced a 

stadium wave. Of the models that produced a low-frequency signal, that signal was 

stationary and in-phase, with no propagation - reminiscent of an externally radiatively 

forced signal – a pattern in stark contrast to the stadium-wave signature’s quasi-periodic 

oscillatory pair of multidecadal-scale M-SSA modes.  

 

A question surfaces: If it were true that linear detrending, done in conjunction with 

multivariate analysis techniques, generated a false propagatory signal in Wyatt et al’s 

application to instrumental and proxy data, as Mann et al. suggest, then why did the same 

linear-detrending and M-SSA methodology, applied to indices reconstructed from 

computer model-simulated data - 20
th

 century data and pre-industrial model-simulated 

data - not produce the same false propagation (Wyatt and Peters 2012)? It produced no 

propagation at all.   

 

Linear detrending appears not to be the source of contrasting results. Data sets do. 

 

Mounting evidence of inconsistencies between modeled and observed data motivated 

Kravtsov et al. 2014 to investigate further. They adapted the Mann et al. approach for 

generating alternate realizations of climate indices - a step designed to test the statistical 

significance of the stadium wave.  A notable difference distinguishes their strategies: 

Kravtsov et al. retained observational data as the bulk of signal information. Mann et al. 

used modeled data as the bulk of signal information. 

 

The Kravtsov et al. approach: 

  

With the goal being to test the role of noise in generating phase uncertainties in the 

propagation alignment, as Mann et al. did; and in the spirit of the Mann et al 

methodology, Kravtsov et al. generate random surrogates of residual variability. As this 

residual component is the component that created the false phase offset among Mann et 

al.’s NHT-based surrogate climate indices, Kravtsov et al. add random synthetic 

realizations of this contaminating component to the observed data to be evaluated with 

multivariate statistical techniques, followed by assessment of statistical uncertainties.  

 

Details follow. 

 

Kravtsov et al. begin with the original Wyatt et al. stadium-wave methodology: They 1) 

linearly detrend observational data; 2) apply M-SSA to the residual to extract the 

multidecadal components; and 3) separate out the interannual-to-interdecadal-scale 
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residual. 4) With this residual, they construct a statistical model with which to generate a 

synthetic realization of this component. This would be analogous to Mann et al.’s white-

noise component. 5) Then index components are re-combined, this time with the century-

scale and multidecadal-scale components in observational data plus the synthetic 

realization of the “noise” component. 6) Next, the three-component mix of data will 

again be separated by linear detrending and application of M-SSA to the residual. The 

linear detrend will differ from the previous one, as the data mix differs from the original. 

7) The multidecadal modes of index co-variability are identified and combined into 

reconstructed components. 8) The RCs are plotted. This is the Kravtsov et al. surrogate 

stadium-wave.  

 

For the purpose of estimating uncertainty of phase offsets among surrogate indices, the 

above-described procedure is repeated 1000 times, in accord with classical Monte-Carlo 

testing. In this way, sampling differences resulting from random Monte Carlo selections 

will generate uncertainties – i.e. variations in phasing (in years) for the surrogate indices. 

The unknown is; will those uncertainties in phasing be larger than the phase-spread 

between indices? If the answer is yes, the “wave” would be statistically insignificant, i.e. 

likely a result of random sampling. In such a situation, indices in the stadium wave likely 

would not retain the same sequence order with each new surrogate stadium wave. This 

would be a false propagation signal, just as the model-simulated data analysis of Mann et 

al. generated. On the other hand, if uncertainties in index-phasing are smaller than the 

phase spreads between neighboring indices, then the sequence order would remain 

constant for surrogate stadium waves and it is likely that the “wave” would be 

statistically significant. The degree of significance depends on how large or small the 

uncertainties are with respect to phase spreads.     

 

It turns out that uncertainties in phasings of indices within the Kravtsov et al. surrogate 

stadium wave are small, considerably smaller than phase spreads between indices.  

Through application of the Monte-Carlo significance estimation to phasing of surrogate 

indices, Kravtsov et al. formally argue that the likelihood of false stadium-wave 

propagation is 5% or less – i.e. the “wave” is robustly statistically significant, most 

unlikely to be the result of random sampling. 

 

In short, the Mann et al. argument against the stadium wave does not hold. Why the 

different results between studies? 

 

Keep in mind, both Mann et al. and Kravtsov et al. constructed surrogate indices 

similarly, and both employed linear detrending in their strategies. Differences are key. 

They lie in two areas: 1) The bulk of data used by Mann et al. was model-simulated data; 

while the bulk of data used by Kravtsov et al. was observed data. 2) And while both 

Mann et al. and Kravtsov et al. linearly detrended individual index time series, Mann et 

al. did so as their principal analysis step. Their intent was to extract the intrinsic 

component. In contrast, Kravtsov et al. employed the detrend technique as a first step to 

put all indices on the same footing and to remove the secular-scale trend in order to 

highlight timescales shorter than century-scale. This was followed by their principal step: 
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M-SSA, which was applied to all climate indices collectively. The intent was to identify 

leading modes of shared co-variability, not the intrinsic component.  

 

The two studies discussed thus far that consider the stadium wave in context of modeled 

data – Wyatt and Peters 2012 and Kravtsov et al. 2014 – show, via two different 

approaches, that signals buried in modeled data sets differ from those in observed data 

sets. This observation prompted Kravtsov et al. to probe the spatial signature signals of 

the data. From what is discussed next, more evidence emerged that the data sets contain 

different information. 

  

Kravtsov et al. look at spatial signatures: 

 

Kravtsov et al. analyze modeled data generated by the Geophysical Fluid Dynamics 

Laboratory Coupled Physical Model (GFDL CM3). Results of five historical simulations 

show an in-phase, stationary collection of “waves” with a period centered on ~75 years. 

No propagation emerges. The phase and shape of each of the indices in each of the five 

GFDL CM3 simulated 20
th

 century “stadium waves” are very similar. This similarity of 

temporal character of individual indices across all five simulations indicates high 

correlation among individual simulations. In other words, each individual index appears 

to share a common signal across all model runs. From this, it can be inferred that this 

signal is forced, not intrinsic.  Intrinsic residual variability, defined as being uncorrelated 

among the five simulations, varies at the interannual-to-decadal time scale.  

 

Furthermore, while two leading modes of multidecadal-scale co-variability are identified 

in this particular set of model-simulated data, only one mode dominates. This is 

noteworthy. Recall that in observational data, two leading modes of multidecadal-scale 

co-variability emerge, yet significantly, and in stark difference to modeled results, each 

leading multidecadal mode in observed data reflects similar dominance.  

 

Kravtsov et al. evaluate and compare spatial patterns of these two network renditions – 

modeled and observed. For both the modeled data and observation-based data they define 

the spatial patterns statistically by regressing the sea-surface-temperature (SST) fields 

onto normalized sine and cosine predictors. A period of 75 years defines the predictor 

curves, with the zero-phase set at 1920; the two curves are in-quadrature, with the sine 

curve well aligned with the 20
th

 century global-temperature wiggle. Roughly, this sine 

curve also corresponds to the GFDL CM3’s stationary, in-phase “wave”.  

 

Model-simulated data reveal a “partial fingerprint”…all sine; no cosine! 

  

Kravtsov et al. find that the spatial pattern of the linear trend and the sine pattern of the 

modeled global SST time series are similar to the observational analogues. But the 

similarities end there. They do not extend to the cosine predictor pattern, which is distinct 

and pronounced in observations, but not so in the modeled data. Only one pattern 

emerges in the spatial signature of the modeled data; while two patterns define the spatial 

character of the multidecadal signal in observed data.  
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Further breaking down the patterns, Kravtsov et al. focus on the fingerprints of individual 

network-index members. Kravtsov et al. show that most indices reconstructed from the 

GFDL CM3-generated data – e.g. the AMO, the Atlantic SST Dipole, the North Atlantic 

Oscillation (NAO), the North Pacific Oscillation (NPO), and the Aleutian Low Pressure 

Index (ALPI) – exhibit variances in the decadal-to-multidecadal range that are far smaller 

than observed variances; in some cases, up to an order of magnitude smaller. This means 

that these indices play an insignificant, if any, role in the modeled multidecadal climate 

variability. Exceptions to this minor-to-absent participation of modeled indices include 

the Pacific Decadal Oscillation (PDO) and the NHT. In these two cases, variances are 

similar to their observed counterparts.  

  

These results suggest that the GFDL CM3’s simulated multidecadal signal is dominated 

by the Pacific sector, and is synchronized to the NHT, with little to no involvement of 

Atlantic and atmospheric indices. GFDL CM3-modeled multidecadal variability, where 

the Pacific role dominates, is unlike observed multidecadal behavior, where all discussed 

indices participate.  One mode of variability emerges from simulated multidecadal 

behavior, with no propagating signal; all simulated indices are in-phase. In contrast, two 

modes of variability characterize observed data at the multidecadal timescale; observed 

indices reflect phase shifts – i.e. propagation. The strong similarity of shape and phasing 

of individual simulated indices across all five realizations suggest a forced response at 

this timescale.   

 

These fundamental differences in outcome between analyses using observation-based 

data and analyses using model-simulated data may imply that dynamics operating in the 

observed multidecadal-scale climate variability are either poorly represented or absent 

from current model design.  

  

Summary of Kravtsov et al. findings: 

In summary, Kravtsov et al. use a variety of strategies to examine robustness of the 

stadium-wave signal. They address Mann et al.’s challenge regarding signal propagation 

and then go further, comparing observed multidecadal behavior with modeled analogues, 

mapping their hemispheric spatial signatures. They find and/or add support to the 

following: 1) Propagation alignment of the stadium wave indices does not appear to be a 

statistical artifact of linear detrending and its documented hemispheric propagation is 

highly unlikely to be due to random sampling associated with higher-frequency noise; 2) 

Two leading distinct modes are required to explain the observed multidecadal variability 

and rationalize the observed stadium-wave propagation. One mode follows the general 

trend of the multidecadal component of NHT; the other mode evolves in-quadrature with 

it. These modes are well expressed spatially, with climate indices across the Northern 

Hemisphere all reflecting the multidecadal signature. 3) This stands in contrast to signals 

within modeled data. Only one dominant mode is identified in model-generated data; 

hence, no propagation among indices. This principal mode strongly reflects a stationary, 

in-phase signal in all indices. And due to strong temporal similarity among each 

“stadium-wave” index in each of five GFDL CM3 simulations, this high correlation 

among signals in all modeled realizations is inferred to describe a forced climate 

response. This response dominates the model’s multidecadal behavior.  The spatial 
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signature of model-generated data is confined mostly to the North Pacific, projected onto 

the NHT, with minimal expression of an intrinsic multidecadal influence, particularly in 

atmospheric and Atlantic-centered indices.    

 

VI. Discussion: 

Failure of modeled data to produce a stadium wave (Wyatt and Peters 2012; Kravtsov et 

al. 2014); potential mechanisms underpinning stadium-wave propagation through 

coupled ocean, ice, and atmospheric indices (Wyatt and Curry 2014); and rejection of 

Mann et al’s null hypothesis (Kravtsov et al. 2014) combine to provide strong support for 

the stadium-wave propagation signal in generating the multidecadal component of the 

Northern Hemisphere’s observed 20
th

 century climate variability.   

 

Fundamental distinctions in the outcomes of analyses between modeled and observed 

data sets, as illustrated through the Wyatt and Peters 2012 and Kravtsov et al. 2014 

studies, may imply deficiencies in climate-model design, potentially reflective of their 

omission of, or poor representation of, dynamics critical to the generation of climate 

variability on multidecadal timescales.   

 

Beyond focus on the stadium wave, general arguments put forth by Mann et al. regarding 

methodology used to isolate forced and unforced components of climate variability serve 

only to highlight the debate over disentanglement of components, while incautiously 

promoting the tacit assumption that all studies using linear detrending use it to isolate the 

intrinsic component of NHT. In the case of the stadium-wave, this assumption is false. 

 

There is value to Mann et al’s method of differencing. It is one way to attempt to isolate 

an intrinsic component, if that is the goal. Others have used differencing with alternate 

terms being subtracted (Trenberth and Shea 2006; Mann and Emanuel 2006; Kravtsov 

and Spannagle 2008; Knight 2009), some with results divergent from Mann et al’s, in 

fact, some with results that are not too dissimilar from those derived from linear 

detrending (Kravtsov and Spannagle 2008; Knight 2009).  

 

VII. Conclusion: 

This memo addresses arguments set forth in Mann et al. 2014 regarding the statistical 

method of linearly detrending indices, and this method’s purported role in generating a 

statistical artifact resembling the hypothesized ‘stadium wave’. The methodology of 

Mann et al. is described, their arguments outlined and addressed, and the debate put into 

perspective. Two conclusions stand out: 1) Additional support for the “stadium-wave” in 

observed data emerged via application of a classical Monte-Carlo approach for statistical-

significance testing; and 2) Spatio-temporal signatures differ markedly between modeled 

and observed data sets. Taken together, these two lines of evidence suggest that intrinsic 

dynamics in nature either are absent or poorly represented in current model designs.   

 

Papers and Supplementary Materials: 

See:  http://people.uwm.edu/kravtsov/publications/ 

And: http://www.wyattonearth.net/publicationsstadiumwave.html  
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Footnotes from text: 

 
1) Intrinsic variability (internally generated) is not devoid of external forcing. To exhibit oscillatory 

behavior, the system must have a source of energy. Internal variability emerges with a constant force 

applied. In addition, an inconstant external forcing can influence the temporal character of an intrinsic 

system. See footnote 3. 

 
2) See :http://www.wyattonearth.net/images/Uncertainty_in_Climate_Science_NotesPages_.pdf  pps.20-40. 

 

3) Frequency entrainment: An inconstant external force can influence tempo of an intrinsic system, if that 

intrinsic system varies as a self-sustained oscillator, and if the frequency of the inconstant externally forced 

signal is similar to that of the self-sustained oscillator.  Ex: Solar variability may indirectly influence 

timescale of climate variability via frequency entrainment (Wyatt (dissertation) 2012). 

 

4) Time series of observed (instrumental) data are much too short to test for statistical significance of a 

multidecadal-scale periodic signal; yet no periodicity is suggested in the stadium-wave oscillatory behavior. 

Instead, over the last 150 years-plus, the stadium-wave network has regularly repeated in quasi-periodic 

fashion, with a timeframe between ~ 55 to 70 years, centering on ~64 years average since late 1800s. 

 

Note: Three more papers authored by S. Kravtsov and colleagues came out in 2017. They 

all deal with modeled data. The CMIP5 collection of models is analyzed, as are some 

other models not in the collection. Discussion of results from these three papers will be 

the subject of the next essay to be posted. 
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