
 1 

Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric 1 

climate signal during the 20
th

 century 2 

 3 

By Marcia Glaze Wyatt
1
 and Judith A. Curry

2
 4 

 5 

 6 
16 September 2013 7 

 8 

 9 

Accepted by Climate Dynamics 10 
 11 

Abstract: A hypothesized low-frequency climate signal propagating across the Northern 12 

Hemisphere through a network of synchronized climate indices was identified in previous 13 

analyses of instrumental and proxy data. The tempo of signal propagation is rationalized in terms 14 

of the multidecadal component of Atlantic Ocean variability – the Atlantic Multidecadal 15 

Oscillation. Through multivariate statistical analysis of an expanded database, we further 16 

investigate this hypothesized signal to elucidate propagation dynamics. The Eurasian Arctic 17 

Shelf-Sea Region, where sea ice is uniquely exposed to open ocean in the Northern Hemisphere, 18 

emerges as a strong contender for generating and sustaining propagation of the hemispheric 19 

signal. Ocean-ice-atmosphere coupling spawns a sequence of positive and negative feedbacks 20 

that convey persistence and quasi-oscillatory features to the signal. Further stabilizing the system 21 

are anomalies of co-varying Pacific-centered atmospheric circulations. Indirectly related to 22 

dynamics in the Eurasian Arctic, these anomalies appear to negatively feed back onto the 23 

Atlantic‘s freshwater balance.  Earth’s rotational rate and other proxies encode traces of this 24 

signal as it makes its way across the Northern Hemisphere.  25 
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1. Introduction   28 

Behavior of numerous and diverse geophysical indices – from fish populations to cosmic 29 

nuclides – fluctuate at a quasi-periodic 50-to-80 year tempo (e.g. Ogurtsov et al. 2002; Patterson 30 

et al. 2004; Klyashtorin and Lyubushin 2007). Motivated by this ubiquity of tempo, Wyatt et al. 31 

(2012; hereafter WKT) analyzed 20
th

-century indices in the context of a hemispherically 32 

spanning climate network through which a signal propagates. WKT termed this propagating 33 

signal the ‘stadium-wave’ – an allusion to sections of sports fans seated in a stadium, standing 34 

and sitting as a ‘wave’ propagates through the audience. In like manner, a signal ‘wave’ appears 35 

to propagate through a hemispheric climate network. 36 

Wyatt (2012) further explored the ‘stadium-wave’ signal, both spatially and temporally 37 

expanding the network. A 300-year proxy record revealed a hemispherically propagating signal, 38 

albeit with modifications of amplitude and tempo prior to the late 1700s. Wyatt and Peters (2012; 39 

hereafter WP) analyzed networks of indices reconstructed from model-simulated data generated 40 

by a suite of models in the third Coupled Model Intercomparison Project (CMIP3) using 20
th

 41 

century and pre-industrial forcings. No secularly varying, hemispherically propagating signal 42 

was found in the model simulations. 43 

The stadium-wave signature identified in instrumental and proxy data is characterized by 44 

two leading modes of variability that together capture the spatio-temporal nature of the 45 

hemispherically spanning signal. WKT invoked numerous observational and model-based 46 

studies to support suggested physical dynamics potentially conveying connectivity within the 47 

stadium-wave network. Candidate mechanisms include low-frequency geographical shifts in 48 

oceanic and atmospheric mid-latitude centers-of-action and meridional displacements of ocean-49 

gyre frontal boundaries (western-boundary-current extensions), from which ocean-heat flux to 50 



 3 

the atmosphere has the potential to influence overlying jet-stream behavior at decadal timescales. 51 

While modeling of interactions between individual components provides insight into potential 52 

localized coupling within the climate network, interaction between individual components is not 53 

the same as collective interaction, where a change in one network component or interaction 54 

promotes changes in all other network members and interactions among them. Recognizing this 55 

fundamental trait of network behavior (Pikovsky et al. 2001), WP hypothesized that failure to 56 

find the signal in any of the CMIP-model simulations might reflect the absence or poor 57 

representation of network dynamics fundamental to signal propagation. WP also discussed 58 

CMIP-modeling deficiencies in representing magnitude, configuration, and geographical 59 

displacements of the rather complex Arctic high-pressure system, a significant factor in 60 

simulating sea ice growth, extent and related dynamics (Gudkovich et al. 2008; Kwok 2011).  61 

This paper extends WKT by investigating the underlying physical mechanisms associated 62 

with the stadium wave through analysis of an expanded network of geophysical indices, with 63 

particular focus on the Arctic region. Proxy indices are introduced to provide further insight into 64 

the multiple dynamics related to hemispheric signal propagation, such as migration of the 65 

Intertropical Convergence Zone, basin-scale wind patterns, western-boundary-current dynamics, 66 

and Arctic sea ice processes.  Establishing proxy-process relationships connotes their potential 67 

use in extending the record prior to the 20
th

 century. The expanded index collection provides 68 

insight and perspective on attribution and potential predictive capacity of the stadium wave.  69 

  70 

 71 

 72 

 73 
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2 Data and Methods 74 

2.1 Data 75 

We evaluate network (collective) behavior of geophysical indices, following WKT and WP. All 76 

newly added indices are discussed below and summarized details and index references are listed 77 

in Table 1. See WKT for descriptions of and references for original indices.   78 

 79 

Original indices: Indices used in the original WKT stadium-wave analysis are also used in the 80 

present study. These indices include 20
th

-century  instrumental values of well-known indices, 81 

such as the Northern Hemisphere area-averaged surface temperature (NHT), the Atlantic 82 

Multidecadal Oscillation (AMO), the North Atlantic Oscillation (NAO), an index representative 83 

of the El Nino-Southern Oscillation (NINO3.4), the North Pacific Oscillation (NPO), the Pacific 84 

Decadal Oscillation (PDO), the Aleutian Low Pressure Index (ALPI), and the less well-known 85 

index of Atmospheric-Mass-Transfer anomalies (AT: Vangenheim (1940); Girs (1971a)).  86 

Long used in Russian studies, AT reflects atmospheric-pressure ‘topography’ that is used 87 

to assess whether the general direction of large-scale wind-flow patterns at mid-to-high latitudes 88 

(30ºN to 80ºN) of the Atlantic-Eurasian sector is zonal or meridional. Direction of cyclonic and 89 

anticyclonic air-mass transfers between 45ºE and 75ºE is evaluated daily from atmospheric-90 

pressure maps. Anomalies relative to a long-term annual mean number-of-days that are 91 

characterized by dominantly zonal or meridional flow are tabulated for the year. The resulting 92 

AT time series, available since 1891, reflects negative meridional values, whereby positive 93 

values of AT indicate anomalous zonal flow (see Klyashtorin and Lyubushin 2007). 94 
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Indices of the original WKT index network were annually sampled. When available, 95 

boreal winter values were used - December, January, February, and March (DJFM) – when 96 

atmospheric variability is most intense and atmospheric modes are most pronounced.  97 

Arctic indices: We have added the winter Arctic Oscillation (AO; Thompson and 98 

Wallace 2000) to our data set to augment our insight into the stratospheric-tropospheric coupling 99 

that occurs within the polar vortex during winter months.  Variations in latitudinal distribution of 100 

atmospheric mass are associated with the AO, which represents the dominant pattern of non-101 

seasonal sea-level-pressure (SLP) variations north of 20ºN. SLP and the associated atmospheric-102 

mass shifts give insight into anomalies of cyclonicity or anti-cyclonicity at high latitudes – 103 

features that impact dynamics of atmosphere, sea ice, and ocean. 104 

Arctic processes, particularly those in the Eurasian Arctic Shelf Seas, exhibit variability 105 

on timescales analogous to that of the stadium-wave signal. To examine whether there is a low-106 

frequency relationship between Arctic processes and the propagating signal, we incorporate into 107 

our expanded network the annual mean Arctic surface air temperature (ArcT (70ºN to 85ºN) 108 

Frolov et al. 2009) and August mean values of the Eurasian Arctic sea ice extent (1900-2008: 109 

Frolov et al. 2009). These data are based on Russian sea ice charts (1933 to 2006: Arctic and 110 

Antarctic Research Institute (AARI)) and archival records, both compiled by the AARI. These 111 

data, digitized and available since 2006 (see Frolov et al. 2009 for full discussion and references 112 

within), have complete records for at least the 20
th

 century for all the Eurasian Shelf Seas for the 113 

month of August, when seasonal ice is close to its annual minimum. The region considered here 114 

lies between 15ºW eastward to 155ºW. From west-to-east these seas are: the Greenland, Barents, 115 

Kara, Laptev, East Siberian, and Chukchi Seas (Figure 1).  116 
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Russian terminology groups these six seas into two categories according to shared 117 

seasonal characteristics: i) the North European Basin (NEB), comprised of the Greenland and 118 

Barents Seas, is distinguished by the fact that portions of the region remain ice free during winter 119 

and interannual variability of ice extent is not confined to summer; ii) the Arctic Seas of Siberia 120 

(ArcSib), which includes the Kara, Laptev, East Siberian, and Chukchi Seas, typically remains 121 

mostly ice-covered throughout the winter, interannually varying only in the summer. Summer 122 

melt strongly influences sea-ice thickness the following winter, and by extension, governs extent 123 

of ocean-heat flux through the ice cover to the overlying atmosphere during those months when 124 

ocean’s influence on the atmosphere at high latitudes is greatest.    125 

We further sort these seas according to dominant frequency of variability to elucidate 126 

impact of timescale:  i) the West Eurasian Seas (West Ice Extent (WIE)) exhibit a pronounced 127 

50-to-80-year tempo of sea-ice-extent variability and include the Greenland, Barents, and Kara 128 

Seas; while ii) the East Eurasian Seas (East Ice Extent (EIE)), which include the Laptev, East 129 

Siberian, and Chukchi Seas, are dominated by interannual-to-interdecadal timescales of 130 

variability: 20-to-30 years and eight-to-ten years. These higher frequencies are superimposed 131 

upon a weak multidecadal component in EIE. Combined normalized values of WIE and EIE 132 

equal the total ice extent (TIE) of the Eurasian Arctic Seas (Table 2).  133 

Atlantic-Eurasian and Pacific circulation indices: Decadal-scale anomaly trends of 134 

Atlantic-Eurasian atmospheric circulation (i.e. AT), are captured in the Atmospheric Circulation 135 

Index (ACI (aka Vangenheim-Girs Index): Girs 1971a; Beamish 1998). ACI is the time-integral 136 

curve of AT anomalies (aka cumulative-sum of AT (csAT)).  Trend reversals of the anomaly 137 

trends, or change points, have been linked to decadal-scale changes in temperature, precipitation 138 

(Girs 1971b), and rotation of the solid Earth (Sidorenko and Svirenko 1988, 1991).  139 
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Similarly, an index representing decadal-scale anomaly trends of large-scale atmospheric 140 

circulation over the North Pacific Ocean and North American continent is known as the Pacific 141 

Circulation Index (PCI: King et al. 1998). As with ACI, PCI reflects the dominant direction – 142 

zonal versus meridional - of large-scale wind patterns. PCI is derived in much the same way as 143 

ACI. Information is gleaned from analysis of daily sea-surface-pressure fields over the North 144 

Pacific and North American region and used to construct synoptic maps whose ‘topography’ is 145 

used to classify atmospheric circulation patterns according to the Girs (1971) classification 146 

scheme. Winter-month averages are computed, anomalies generated, and cumulative sums 147 

calculated. The PCI record is available for the full 20
th

 century. 148 

King et al. (1998) compared PCI to the time-integral of the Aleutian Low Pressure Index 149 

(csALPI). Strong correspondence exists between their records of variability, despite the fact that 150 

the two indices are derived using different metrics (see WKT table 1). They conclude that the 151 

winter PCI provides a single-index representation of the multiple influences and sub-processes 152 

associated with anomaly trends of ALPI. In a similar manner, we use both ACI and PCI to gain 153 

insight into cumulative forcings of wind-flow patterns and their associated sub-processes on 154 

dynamics within the stadium wave. 155 

Proxy indices: Motivated by observations of secular-scale variability in a variety of 156 

proxy indices and by their apparent relationships to either temperature or sub-processes within 157 

the stadium-wave network, we have added several proxies to our expanded index collection.  The 158 

proxy indices used here include:  159 

i) An 825-year sub-decadally resolved (annual resolution available for the portion used in 160 

this study) record of Globigerina bulloides abundance, available through 2009 (GB: Black et al. 161 

1999; personal communication), as measured from marine sediment in the Cariaco Basin off the 162 
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coast of Venezuela – a proxy associated with latitudinal migrations of the Atlantic mean 163 

Intertropical Convergence Zone (ITCZ).   164 

ii) Monthly resolved records of Sr/Ca isotope ratios in corals from Palmyra Island 165 

(Nurhati et al. 2011) that capture a century-long record of sea-surface-temperatures (SST) of the 166 

central Pacific tropics (162ºW, 6ºN) - a region that on decadal time scales is linked with 167 

extratropical climate variability related to the North Pacific Gyre Oscillation (NPGO: Di Lorenzo 168 

et al. 2008). The NPGO affects dynamics of the Kuroshio-Oyashio western-boundary-current 169 

and its extension, the North Pacific Current (Ceballos et al. 2009; Di Lorenzo et al. 2010).  170 

iii) Japanese Sardines (JS: Klyashtorin 1998; Noto and Yasuda 1999, 2003), whose 171 

population outbursts off the Japanese coast are spatially related to the meridional migrations of 172 

the western-boundary current (Kuroshio Current) and its extension (Oyashio Front) and 173 

temporally associated with positive polarities of Pacific ocean-atmospheric circulation patterns 174 

(PDO, NPO, NINO, ALPI). Annually resolved commercial statistics are available since 1920. 175 

Japanese chronicles extend the record to 1640 (Kawasaki 1994). 176 

iv) Earth’s rotational-rate anomalies, whose fluctuations have been systematically 177 

documented via telescope since ~1623 and are measured in terms of the negative length-of-day 178 

index (ngLOD: Stephenson and Morrison 1984), represent the difference between an actual 179 

(astronomical) day and the mean length-of-day (86,400 seconds). Rotational-rate anomalies, 180 

measured in milliseconds (ms), are physically linked to a variety of geophysical processes, their 181 

associated impacts on Earth’s axial angular momentum and moment of inertia invoked to 182 

rationalize observed correlations (Lambeck and Cazenave 1976; Dickey et al. 2011).  At high-183 

frequency timescales, with variations of ~0.2 to 0.4 ms, atmospheric circulation accounts for the 184 

majority of ngLOD variability (Dickey et al. 2007). At low-frequency timescales, with 185 
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multidecadal variations of 4 to 8 ms, atmospheric circulation and related sub-processes of 186 

precipitation and global redistribution of water account for ~14% of the magnitude of ngLOD 187 

variability (Gross 2005); the remainder attributed to interactions within the Earth’s interior (Jault 188 

et al. 1988), suggesting a mechanism common to both factors (Sidorenkov et al. 2005; 189 

Sidorenkov 2005, 2009; Dickey and Marcus 2011).  190 

Dickey and Marcus investigated a hypothesized relationship between ngLOD and the 191 

global surface average temperature in their 2011 paper (hereafter DM; 2011). Examination of a 192 

140-year record of observed and modeled temperature data revealed strong correlation between 193 

the two indices until the 1930s, after which the surface temperature trend increased much more 194 

than that of ngLOD. DM removed the estimated anthropogenic footprint from the surface 195 

average temperature to generate a ‘corrected’ temperature, one assumed to reflect only natural 196 

variability. Correlation between ngLOD and the ‘corrected’ temperature was strong. 197 

We use annually resolved ngLOD as a proxy for patterns of long-period variability in 198 

large-scale wind flow, which are related to the multidecadal components of surface average 199 

temperatures, in particular, Arctic temperature (Klyashtorin et al. 1998).  200 

v) The Atlantic SST Dipole (Dipole: Latif et al. (2006); Keenlyside et al. (2008)) is based 201 

on sea-surface-temperatures (SST: Rayner et al. 2003; 2006
3
) between mid-latitudes of the North 202 

and South Atlantic Oceans. The Dipole index isolates SST variability related to variations in the 203 

Atlantic sector of the meridionally overturning circulation (AMOC). We use the Dipole as a 204 

proxy for meridional migrations of the ITCZ, which studies suggest is ‘pushed’ northward 205 

(southward) with intensification (weakening) of the AMOC, the consequent atmospheric heat 206 

transports effectively compensating for the northerly directed, cross-equatorial ocean heat 207 

                                                 
3
 Rayner et al. 2003 record 1871-2000; Rayner et al. 2006 record 1850-2004. 
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transport related to dynamics of the AMOC (Zhang and Delworth 2005; Kang et al. 2008; 208 

Frierson and Hwang 2012; Donohoe et al. 2013; Marshall et al. 2013).  209 

Note: indices plotted in their negative polarity are indicated by the prefix, ‘ng’. The 210 

prefix is chosen over the negative sign as it is easier to see on charts and figure legends. If the 211 

index has no prefix, it represents positive polarity. 212 

 213 

2.2 Methods   214 

Prior to analysis, all raw indices were linearly detrended (least squares method), resulting in a 215 

mean of zero. Our intent in removing the linear trend was to remove the centennial scale trend to 216 

highlight multidecadal variability. After the data are linearly detrended, the values are 217 

normalized to unit variance, thereby facilitating intercomparison of index behavior.    218 

The cornerstone of our analysis is the Multichannel Singular Spectrum Analysis (M-SSA: 219 

Broomhead and King 1986; Elsner and Tsonis 1996; Ghil et al. 2002). M-SSA is used to extract 220 

and characterize dominant spatio-temporal patterns of variability shared by indices within a 221 

network. The technique is particularly skillful in identifying signals from relatively short, noisy 222 

data sets and in identifying non-zero-lag, or propagating, relationships (Ghil et al. 2002).  Both 223 

high-frequency oscillatory signals and secularly varying trends can be extracted using M-SSA. 224 

Mean values of these M-SSA-extracted patterns, or modes of index co-variability, are plotted on 225 

an M-SSA spectrum and error bars (based on North et al. 1982 criterion) appended. 226 

To estimate the error bars, the variance of the mode is multiplied by the square root of 227 

2/N*, where N* = the number of degrees of freedom. N*=N(1-r
2
)/(1+r

2
), where N is the length of 228 

each time series in the index set. One-hundred-year time series for each index were auto-229 

correlated. The auto-correlation plots showed that the maximum autocorrelation after one year 230 
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among the eight indices was r~0.65. Using this auto-correlation value in the Bretherton formula 231 

(Bretherton et al. 1999), the effective number of degrees of freedom was estimated to be 40. 232 

From this, the projected decorrelation time is N/N* = 100/40 = 2.5 years. This is considered the 233 

amount of time after which each data point can be considered independent from the ones 234 

preceding and following it. 235 

In the original stadium-wave study (WKT), M-SSA extracted two leading modes of 236 

variability. Together, the two leading modes captured the complex spatial and temporal 237 

characteristics of a secularly varying, hemispherically propagating signal. The likelihood that a 238 

low-frequency signal, characterized by a delayed alignment of spatially and dynamically diverse 239 

indices, i.e. a hemispherically propagating signal, could be due to mere random chance was 240 

found to be less than 5%. This is the signal we further explore through the expanded database. 241 

 There is a risk of adding too many indices when applying M-SSA, which can lead to 242 

overfitting, distorting the results.  Additional spatial information must be introduced to avoid this 243 

caveat. We do this by appending regions heretofore unexplored: e.g. the Arctic and tropical 244 

Atlantic latitudes. We evaluate numerous subsets of the expanded data base, network sizes 245 

ranging from four to 20 members, all combinations hemispherically representative.   246 

To visualize this signal as it is expressed in each index, M-SSA modes are represented in 247 

their original index space by reconstructed components (RCs).  A reconstructed component is 248 

effectively the narrow-band filtered version of an original index time series. RCs of the identified 249 

leading modes, summed and normalized, generate the stadium-wave filter for index networks.  250 

A second method applied to our raw-data sets, and done independently from the M-SSA 251 

exercise, is correlation analysis. Correlated indices, considered along with M-SSA results, 252 

potentially add further insight into dynamics associated with the signal’s propagation. Prior to 253 
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computing correlations between pairs of linearly detrended, normalized raw time series, values 254 

were smoothed with a 13-year running mean filter to sort out shorter-term fluctuations in order to 255 

highlight longer-term behavior of indices. We also experimented with a variety of filter sizes, 256 

from five years to 20; results were virtually unchanged.  257 

We also introduce transformed time series to convey insight into forcings and responses 258 

among indices whose behaviors are interconnected within a network. Transformed time series 259 

include two types: time-integrated, such as ACI and PCI, and time-differentiated values. The 260 

former yields anomaly trends of an index’s time series; while the latter converts time series of 261 

indices into incremental values – an approximation of the time-derivative of a trend (e.g. AT is 262 

the approximate time-derivative of ACI). Transformed indices are useful in detecting potential 263 

cause-and-effect relationships. We focus on the time-integrated transformation in this study. 264 

To transform a raw time series into its anomaly trend, or time integral (Hurst 1951; Outcalt et 265 

al. 1997), one computes a cumulative sum from a time series of anomalies (raw time series 266 

linearly detrended via least-squares method and normalized to unit variance). Cumulative sum 267 

(cs) of a time series of anomalies, X, is obtained via equation (1): 268 

X(cs)(n) = X(n) + Xcs(n-1)                                                      (1) 269 

where X(cs)(n) is the cumulative-sum value at time n; X(n) is the anomaly time-series value at 270 

time n; and X(cs)(n-1) is the cumulative-sum value at n-1. 271 

We use a red-noise model to test the statistical significance of spatial and propagation 272 

properties of the M-SSA-identified low-frequency signal and also of the correlation analysis 273 

results. The red-noise model, used to generate surrogate time series, is fitted independently to 274 

each index time series of raw values previously detrended and normalized and has the form: 275 

x
n +1

= ax
n

+ σw ,                                                                              (2) 276 
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where x
n is the simulated value of a given index at time n; x

n +1 is its value at time n+1; w is a 277 

random number drawn from the standard normal distribution with zero mean and unit variance, 278 

while parameters a and σ  are computed by linear regression.  279 

Resulting surrogate time series are subject to the same analyses, M-SSA and correlation 280 

analysis, as are the ‘real data’ time series. Analyses on the surrogate values are repeated 1000 281 

times and the 95
th

 percentile of results is computed (see WKT and WP for details).  282 

 283 

3 Stadium-wave relationships 284 

The stadium-wave signal propagation sequence through the network of eight original indices is 285 

shown in Figure 2a. Low-frequency behavior is evident, although the random occurrence of a 286 

multidecadal tempo in a time series of only 100 years cannot be ruled out. WKT therefore did 287 

not assign an exact period to the signal; rather, the signal is described as secularly varying, with 288 

an apparent 64-year period during the 20
th

 century. Despite limitations of a short time series, its 289 

short length does not prevent assigning strong statistical significance to patterns of variability 290 

that are shared by all indices in the network. Regional diversity of indices made this finding 291 

more significant, adding a spatial signature to the signal. Phasing-offsets among the indices, 292 

repeating in an orderly fashion, indicate the signal’s propagating nature. Figure 2b shows the 293 

leading two modes of the WKT signal plotted on an M-SSA spectrum; p < 5%.    294 

Figure 3 shows a plot of normalized reconstructed components of the stadium-wave 295 

signal in one of the 20
th

-century expanded networks analyzed. In Figure 4, mean variances of the 296 

modes are plotted on an M-SSA spectrum including error bars and the red-noise envelope. The 297 

leading two modes are well-separated from all others, with overlapping error bars, reflecting 298 

similar variances of the two modes. This statistically significant signal (p < 5%) is essentially the 299 
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same signal identified in WKT and was repeatedly identified in other hemispherically 300 

representative index combinations, ranging in network size from four members to 20. 301 

The spatially expanded networks reveal dynamical links not apparent in WKT. In 302 

addition to the role of the Atlantic Ocean identified by WKT, our results elucidate roles played 303 

by the atmosphere and Arctic sea ice. As this signal propagates, distinct regimes of warming or 304 

cooling hemispheric temperature trends prevail. Based on this analysis, we propose that there are 305 

four stages of a climate regime, which are indicated in the annotation of Figure 3.  Each stage is 306 

dominated by a particular type of behavior, with a particular geographical focus. Each stage 307 

features a subset of indices within the broader network whose behaviors reach peaks and valleys 308 

at similar times. We term these four co-varying index clusters ‘Temporal Groups’ (I-IV). 309 

 Not all indices express the signal equally. The amount of variability due to the stadium-310 

wave signal in each index is captured in a channel fraction variance plot (Figure 5). The circled 311 

regions indicate channel fraction variance values for index clusters of the four Temporal Groups. 312 

Indices in Groups I and IV express the signal strongly. Expression of the signal is less in Group 313 

II indices. Group III indices have a large range of fractional variances. Channel fraction variance 314 

is tied to an index’s dominant time scale of variability. Indices with long ‘memories’ 315 

(persistence), which fluctuate at low-frequency tempos, manifest the stadium-wave signal the 316 

most strongly. These indices tend to integrate into their ‘memory’ incremental direct or indirect 317 

forcings of higher frequency indices, such as incremental changes in wind or ice cover.  We 318 

suggest that long-memory indices in Groups I and IV tend to represent the ‘cumulative’ effect of 319 

interacting processes related to higher frequency dynamics. AMO is an example of an index that 320 

integrates incremental forcings of higher frequency sub-processes. We will show that it is the 321 

long-memory indices that set the signal tempo, while the higher frequency atmospheric indices 322 
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carry the signal hemispherically and reinforce the low frequency tempo via accumulated sub-323 

process-related forcings incorporated into the ocean memory. Sea ice appears to link the lower 324 

and higher frequency indices.  325 

Maximum values of indices characterizing Groups I, II, III, and IV represent the timing 326 

of trend reversals of Group clusters as the wave propagates through the four stages of a warming 327 

climate regime. Similarly, minimum values of these Group indices represent the timing of 328 

oppositely signed trend reversals that occur in sequence as a cooling regime unfolds. In the 329 

discussion to follow, we focus on evolution of a warming regime, but it is implicit that a cooling 330 

regime evolves similarly but with opposite sign
4
.  331 

 332 

3.1 Temporal Groups  333 

A Temporal Group’s indices tend to reflect a dominant geographic region exhibiting a dominant 334 

set of sub-processes. This is especially apparent in Groups I through III. Group IV differs 335 

slightly. Instead of representing specific sub-processes of a region, Group IV indices reflect a 336 

culmination of influences of anomalies of sub-processes.  337 

Peak activity within each of the four Groups represents stages of climate regime 338 

development as the signal propagates through the network. To obtain plots of these Groups, 339 

reconstructed components (RCs) of indices whose peak values represent each stage of regime 340 

development are extracted from an expanded network (e.g. Figure 3) to which M-SSA was 341 

applied. Representative RCs then are plotted according to Group. Tables 3 through 6 reflect 342 

correlation values between raw time series (detrended, normalized, and smoothed with a 13-year 343 

filter) of index pairs. Significance levels = p<5% are shown in blue; p<1% are shown in red.   344 

                                                 
4
 Terminology: We refer to stages of a cooling either as the minima of Groups I through IV, or as peak values of 

Groups –I, -II, -III, and –IV. 

 



 16 

 345 

3.1.1 Temporal Group I:  Ocean-ice interactions in the North Atlantic sector of the Arctic 346 

predominate in this Group. Cool Atlantic sea-surface temperatures (ngAMO) correlate strongly 347 

with positive sea ice extent of the Greenland and Barents Seas (NEB) - and by extension, with 348 

sea ice of the West Eurasian Arctic (WIE) (Table 3a).  349 

Negative PCI co-varies with Group I (Table 3b), which may reflect the remote and 350 

cumulative teleconnected influence of Pacific circulations on the Atlantic’s freshwater balance. 351 

An atmospheric bridge, of sorts, conveys Pacific influence on Atlantic precipitation patterns. 352 

Through modified atmospheric patterns, associated Pacific sea-surface-temperature anomalies 353 

are linked to surface salinity anomalies of the Atlantic, ultimately providing negative feedback to 354 

the Atlantic Meridional Overturning Circulation (AMOC) (Latif et al. 2000; Schmittner et al. 355 

2000; Latif et al. 2001), and by extension, the AMO (Knight et al. 2005; Latif et al. 2006; 356 

Msadek et al. 2010a), setting the stage for the AMO’s subsequent influence on ice inventory. 357 

Plotted raw indices in Figure 6 reflect the relationships among ngAMO, the negatively signed 358 

cumulative sum of PDO, and ngPCI – an index related to decadal-scale trends of Pacific 359 

circulation patterns.   360 

Globigerina bulloides and the Atlantic SST Dipole correlate strongly with Group I 361 

indices. Positive values of G. bulloides suggest enhanced upwelling of cold water off the coast of 362 

Venezuela (Black et al. 1999), which may be associated with a southward displacement of the 363 

Atlantic sector of the Intertropical Convergence Zone (ITCZ). The negative polarity of the 364 

Atlantic SST Dipole suggests the same. A south shifted ITCZ is linked to a weakened Atlantic 365 

meridional overturning circulation (AMOC) (Latif et al. 2006; Donohoe et al. 2013, Kang et al. 366 

2012; Marshall et al. 2013). These dynamics co-occur with the shifting Arctic Front in response 367 
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to the migrating sea-ice edge (e.g. Zakharov 1997, 2013), related to phase of AMO. Figure 7 and 368 

Table 3c reflect these relationships: as sea ice increases with a cool AMO and a weak AMOC, 369 

the sea ice edge advances equatorward, and the ITCZ shifts southward (section 2.1), as indicated 370 

by positive anomaly values of GB and ngDipole.  (See WKT on AMOC-AMO link.) Peaks of 371 

index plots occur near ~1918 and 1976, with a minimum at ~1942. These are timings of 372 

previously identified climate-regime shifts (Tsonis et al. 2007; Van Loon et al. 2007).  373 

 374 

3.1.2 Temporal Group II:  Atmospheric response to an ice-induced polar-equatorial meridional 375 

temperature gradient, particularly pronounced in the Siberian sector of the Eurasian Arctic, 376 

characterizes Temporal Group II (Figure 8). Indices peak ~1923 and ~1982 and minimum 377 

values center on ~1950. Co-varying indices in Group II include the ice index of ArcSib north of 378 

Siberia and AT, a measure of the zonal component of large-scale wind flow. The SST-based 379 

proxy representing NPGO also co-varies with this Group. NPGO is a wind-driven ocean-gyre 380 

index in the North Pacific, related to both extratropical atmospheric dynamics and to meridional 381 

migrations of the Pacific ITCZ. Positive co-variance among these sea ice and wind related 382 

indices (Table 4) is consistent with a basin-scale wind response to the polar-equatorial 383 

meridional temperature gradient (Honda et al. 2009; Petoukhov and Semenov 2010; Outten and 384 

Esau 2011): increased sea ice extent inhibits ocean-heat flux to the atmosphere, thus cooling 385 

Arctic temperatures, augmenting a meridional atmospheric temperature gradient, and thereby 386 

intensifying large-scale wind flow with an enhanced zonal component. Boreal winter indices, 387 

NAO and AO
5
, also co-vary with Group II. 388 

 389 

                                                 
5
 Winter indices of NAO and AO behave differently from their annual counterparts. In table and figure legends used 

in this paper, we emphasize the use of winter indices by adding the letter ‘w’: e.g. NAOw and AOw. 
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3.1.3 Temporal Group III:  North Pacific activity and ice-influenced atmospheric dynamics 390 

dominate Temporal Group III (Figure 9). Continued sea ice attrition west of the Pacific sector 391 

and the subsequent increase of ocean-heat flux to the atmosphere in that region remotely 392 

influence Pacific circulations by shifting air mass away from the high latitudes, displacing it to 393 

mid-latitudes. Latitudinal redistribution of atmospheric mass weakens the Arctic High, effects of 394 

which extend to the Pacific as the anomalous low-pressure system expands (e.g. Overland et al. 395 

1999; van Loon et al. 2007), intensifying the Aleutian Low. These processes are reflected in the 396 

strong connections between the Pacific centered circulations (NPO, ALPI, and PDO) and 397 

anomaly trends (cumulative-sums (cs)) of WIE, TIE, and Kara Sea ice (Table 5a). We 398 

hypothesize that these relationships reflect the incremental influence of sea ice extent 399 

fluctuations on the atmosphere that are consistent with observed dynamics (e.g. Zakharov 1997; 400 

Bengtsson 2004; Frolov et al. 2009): incremental reductions in ice cover (particularly in the 401 

Atlantic sector) lead to increased ocean-heat flux to atmosphere, promoting a decrease in sea-402 

level-pressure of the Arctic High, the influence of which ultimately extends into the Pacific (e.g. 403 

Overland et al. 1999; van Loon et al. 2007). Group III indices peak ~1929-1933 and ~1985-1990. 404 

The multidecadal component of EIE – sea ice of the Laptev, East Siberian, and Chukchi 405 

Seas – positively co-varies with Pacific centered circulations. The sea ice edge in the Pacific 406 

shifts southward with increasing trends in this stage (Asmus et al. 2005; see Frolov et al. 2009), 407 

coinciding with a weakening Arctic High, displacement of atmospheric mass equatorward, and 408 

an increased number of cyclones co-varying with an intensified Aleutian Low.  409 

 Centuries-long records reveal decadal-scale variability of Japanese sardine outbursts in 410 

the Kuroshio-Oyashio western-boundary-current extension. Japanese sardine outbursts co-vary 411 

positively with Pacific circulations - PDO, in particular (Table 5b). Fueling these outbursts is an 412 
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increased supply of nutrients – a product of a deepened mixed-layer depth (Polovina et al. 1995). 413 

Yasuda (2003) demonstrate a relationship between Japanese sardine outbursts and a deepened 414 

mixed-layer-depth to ‘Oyashio Intrusions’ - southward shifts of the Kuroshio-Oyashio boundary 415 

– the ocean-gyre boundary that separates the Oyashio Current of the subpolar region from the 416 

Kuroshio Current of the subtropical zone.  The Kuroshio-Oyashio front shifts southward as the 417 

sea ice edge in the Pacific sector of the Arctic advances and as PDO increases (Miller and 418 

Schneider 2000). Between the mid-1960s to the mid-late 1980s EIE and Pacific circulations 419 

increased. Japanese sardine populations also increased. The mixed-layer depth was unusually 420 

deep (Yasuda et al. 2000). Similar trends occurred between ~ 1905 and the early 1930s as Group 421 

III indices were increasing.    422 

 423 

3.1.4 Temporal Group IV:  High latitudes of the Northern Hemisphere are the focus in Temporal 424 

Group IV. The culmination of anomaly trends of the various large-scale wind and wind-related 425 

patterns, particularly those related to Group II, are featured (Figure 10). They co-vary with the 426 

Arctic temperature and NHT, perhaps indicating a relationship between intervals of anomalies 427 

(in sea ice extent, corresponding ocean-heat flux, and associated winds and wind-related 428 

dynamics) and the overlying temperature. Correlations among these indices are listed in Table 6a 429 

and further discussed in section 4. The anomaly trend of ArcSib leads indices of this Group by 430 

~3 years. Also co-varying with this Group is Earth’s rotational rate (ngLOD). It is strongly 431 

correlated to the anomaly trend of large-scale wind patterns (csAT) and by extension, the Arctic 432 

temperature and NHT (section 2.1 and Table 6b). 433 

Maxima of Group IV indices occur around 1938 and 1998. At these times of peak Arctic 434 

temperature and NHT, AMO is nearing maximum warmth, sea ice in NEB and WIE continues to 435 
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shrink (Table 6c), and the poleward retreated sea ice edge in the Atlantic sector displaces the 436 

Arctic Front far northward. The Atlantic ITCZ is similarly displaced. Minima center on ~1910 437 

and 1971 and host the same dynamics, yet of opposite sign. 438 

  439 

3.2 Changing Index Relationships as a Regime Evolves 440 

Index relationships appear complex as the regimes evolve. Figure 11 simplifies the pattern: 441 

trends of successive Group-indices systematically and sequentially reverse as the signal 442 

propagates through stages of a regime. Stages, which coincide with peaks of each Group, are 443 

indicated by vertical lines. Each Temporal Group is represented by one index (e.g. AMO, AT, 444 

PDO, and Arctic T) for the sake of simplicity, and all indices are shown as positively signed
6
 in 445 

order to illustrate our point. Ice indices are not included in this discussion; only ocean, 446 

atmosphere, and temperature indices are considered. The chart begins in 1910 (peak of Group –447 

IV) with a transition from a cooling regime to a warming one. In ~ 1910, prior to the beginning 448 

of the warming regime that began ~1918, indices representing Groups II through IV are trending 449 

together (red lines). Their values are increasing, while AMO of Group I is trending out-of-phase 450 

(blue line). An AMO trend in opposition to other indices marks the transition between regimes.  451 

Once the AMO reverses trend, as it did in ~1918 at the peak of Group I when the Atlantic 452 

was at its coolest, all indices of all Groups are increasing. This shared uni-directional upward 453 

trend among indices distinguishes an incipient warm regime – i.e. stage I. As the wave 454 

progresses through the network sequence, passing through successive stages, indices begin to 455 

reverse trend direction, one-by-one.  456 

After the peak of Group II, all indices continue to increase except for AT and its co-457 

varying Group II indices. After the peak of Group III, AT and PDO, and related indices have 458 

                                                 
6
 This is in contrast to AMO in all stadium-wave figures, where AMO is plotted in its negative polarity (ngAMO). 



 21 

reversed trend, now decreasing. AMO and surface temperatures continue an upward trend until 459 

the peak of Group IV. After the peak of Group IV, AT, PDO, and ArcT are all decreasing; while 460 

only AMO continues to increase. This continued upward trend of AMO, co-occurring with all 461 

other indices in decline, marks the transition at the end of the warming regime, leading into a 462 

cooling regime. After a several year transitional interval, the ensuing cooling regime begins with 463 

AMO reversing trend ~ 1942. All indices decrease during this initial stage of a cooling regime. 464 

Stages one through four of the cooling regime, indicated by peaks of Groups –I through –IV, 465 

lead to the next regime transition in ~1971. A new regime of warming begins ~1976.  466 

  467 

4 Stadium-Wave Mechanisms 468 

WKT hypothesized that the stadium-wave signal propagates through a hemispheric network of 469 

synchronized climate indices. We have argued that through this propagation, climate regimes 470 

evolve in four stages. Low-frequency variability of sea ice extent in the Eurasian Arctic Seas is a 471 

critical component underpinning the hypothesized signal and multi-decadal scale evolution of 472 

climate regimes.  473 

What makes sea ice in this particular region so fundamental to the wave’s existence? Sea 474 

ice in the Northern Hemisphere is uniquely exposed to open ocean (the North Atlantic) in the 475 

Eurasian Arctic. This juxtaposition governs sea ice growth by giving the Atlantic Ocean 476 

dominant constructive or destructive influence over the feature mostly responsible for wintertime 477 

sea ice cover, the halocline. The halocline is a subsurface zone, approximately 150 meters thick, 478 

where salinity concentration changes rapidly with depth; in the North Atlantic sector of the 479 

Arctic, salinity values decrease with depth. Formation of the halocline relies upon the interaction 480 

between layers of water with contrasting properties: Overlying cool, desalinated Arctic surface 481 
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water mixes with warm, saline water below. The halocline’s resulting vertical density structure, 482 

in turn, maintains separation between the two water masses and prevents ocean heat at depth 483 

from reaching the surface. Where a strong halocline exists, sea ice growth is promoted (Zakharov 484 

1997; Frolov et al. 2009 and references within). Ice extent influences large-scale wind patterns, 485 

which influence long-term temperature trends (e.g. Outten and Esau 2011). Thus dynamics that 486 

either build or destroy the halocline in the North Atlantic sector of the Arctic have a marked 487 

influence on climate-regime evolution as the stadium-wave propagates through the network.  488 

The schematic of Figure 12 and sections 4.1 through 4.5 summarize the stadium-wave’s 489 

propagation through the four stages of climate regime evolution. We discuss only stages I 490 

through IV of the evolution of a warming regime. (Stages –I through –IV of the cooling regime 491 

are simply opposite.)   492 

 493 

4.1 Processes and Trends Relate to Stage I  494 

A regime of warming temperature commences with maximum cool sea-surface temperatures in 495 

the North Atlantic. Sea ice extent in the West Eurasian Arctic (WIE) is at maximum values.  496 

ITCZ is displaced to its most southerly position. For a decade-plus prior to these index maxima, 497 

conditions conducive to sea ice growth in the Atlantic sector of the Arctic have been building. 498 

These include high sea-level-pressure anomalies in the Arctic High. Associated with the high 499 

sea-level-pressure anomalies are anticyclonic-wind anomalies that govern sea ice export patterns 500 

within the WIE region. Their net effect is to bolster halocline development through freshening of 501 

the Greenland, Barents, and Kara Seas (Bengtsson et al. 2004; Frolov et al. 2009 and references 502 

within). The atmospheric Arctic Front shifts southward with the advancing ice edge (Zakharov 503 

1997). Precipitation zones shift southward, gradually reducing freshwater delivery to the Arctic – 504 
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a negative feedback sowing future reversal of the regime against a backdrop of dominantly 505 

positive feedbacks reinforcing sea ice growth. This stage ends with AMO, WIE, and ITCZ 506 

having reversed their trends.  507 

 508 

4.2 Processes and Trends Related to Stage II  509 

Sea ice of WIE dominates, despite its recently reversed trend. Even though AMO is slowly 510 

warming, ocean heat flux is inhibited by the ice cover and the atmosphere at high latitudes chills. 511 

Simultaneously, yet in quadrature offset, EIE in the Laptev, East Siberian, and Chukchi Seas is 512 

growing. Group II indices respond to the increasing, albeit eastward shifting, distributions of 513 

total ice cover – a region dominated by the Kara Sea. Total ice cover, specifically ArcSib, co-514 

varies with a strong meridional temperature gradient that simultaneously develops between the 515 

ice and snow covered surfaces of high latitudes and the warm surfaces of lower latitudes in the 516 

Eurasian region. In atmospheric response, large-scale winds (AT) strengthen; their zonal 517 

component advecting heat and moisture from the lower latitudes of the Atlantic Ocean to the 518 

mid-to-high latitudes of the Eurasian landmass downwind, disrupting previously stable surface 519 

conditions and increasing high cloudiness, both changes leading to increasing continental 520 

temperatures, in particular those at low altitudes and higher latitudes (e.g. Van Loon et al. 2007). 521 

Cyclonic (negative sea-level-pressure) anomalies weaken the Arctic High; westerly winds 522 

increase in intensity, further advecting atmospheric heat and moisture eastward. WIE from 523 

Group I is now decreasing, in part due to changing sea ice export patterns. The cyclonic winds 524 

altering the ice export pattern that previously augmented the WIE inventory now are restricting 525 

the freshwater supply to the western marginal seas (Gudkovich and Nikolayeva 1963; see Frolov 526 

et al. 2009). The Arctic Front’s southward displacement continues to deprive the Arctic of 527 
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precipitation and related runoff. The anomalous cyclonic winds dynamically impact the ice, 528 

leading to open cracks in the ice surface through which heat from the ocean escapes, heating the 529 

overlying atmosphere. Winds increase influx of warm Atlantic water into the Arctic. The initial 530 

cold signal converts to a warming one. Initially, ice scripted the atmospheric response. The 531 

atmosphere now begins directly and indirectly to modify the ice cover. The Atlantic sea ice edge 532 

retreats, its progress traced by similar northward migrations of the Arctic Front and the ITCZ. 533 

Ocean-heat flux to the atmosphere increases. Surface temperatures increase. The regime thus far 534 

built by processes reflecting the stadium-wave propagation through Group I and II indices 535 

continues to mature.  The halocline is now deteriorating, inhibiting sea ice growth. ArcSib has 536 

reached peak values and WIE is in decline.  537 

 538 

4.3 Processes and Trends Related to Stage III  539 

As the ArcSib and resulting winds related to AT and NPGO begin to wane, WIE continues to 540 

decrease and AMO continues to warm along with surface air temperatures. Westerlies continue 541 

to dominate, albeit more shifted toward the North Pacific. Atmospheric (NPO, ALPI) and related 542 

oceanic patterns (PDO) are increasing as an indirect result of the sea ice attrition in WIE. 543 

Enhanced ocean-heat flux leads to lower SLP anomalies in the Arctic High. The deepened 544 

center-of-action extends well into the North Pacific, intensifying the Aleutian Low, which shifts 545 

its center south and east. East Eurasian sea-ice (EIE) governed by complex and competing ice-546 

atmosphere-ocean interactions, increases with strengthening Pacific circulations, tracking in-547 

quadrature with AMO and WIE. Wind-flow patterns in the Atlantic sector of the Arctic are 548 

decreasing the freshness of the shelf seas in the western Eurasian region, via modified sea ice 549 

export patterns between the Arctic Basin and marginal seas (Subbotin 1988; Frolov et al. 2009). 550 
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This overarching process coincides with a second, more localized wind pattern that is generated 551 

by a sea-level-pressure anomaly, the source of which lies near the Barents-Kara border.  These 552 

winds, confined to the lower troposphere, now coax an influx of saline water from the warming 553 

Atlantic into the Barents and Kara Seas (Bengtsson et al. 2004). Both wind-related patterns 554 

reduce the halocline. WIE continues to diminish and ArcSib is in decline. As the signal continues 555 

its propagation, this penultimate stage of climate-regime development begins to weaken and all 556 

of sea ice indices now are decreasing: WIE, ArcSib, TIE, and EIE.  The sea ice edge in the 557 

western Eurasian Arctic continues its poleward retreat.   558 

 559 

4.4 Processes and Trends Related to Stage IV  560 

By the time Group IV indices begin to peak, positive anomalies of ArcSib and its associated 561 

winds cease. The Arctic temperature and NHT reach maximum values. Unlike at other stages of 562 

regime development, no sub-processes of our expanded network peak at stage IV. Instead, 563 

anomaly trends peak, representing the conclusion of a multidecadal stretch of anomalies of sub-564 

processes related to Group II. These anomaly trends represent the culmination of impacts related 565 

to interlinked changes in sea ice extent, ocean-heat flux, sea-level-pressure, large-scale wind and 566 

sea-ice-export patterns, position of Arctic Front, and consequent atmospheric heat and moisture 567 

influx into the Arctic (Zakharov 1997; Francis and Hunter 2007) - their collective interaction 568 

coinciding with an increased influx of Atlantic Intermediate Water into the Arctic, the 569 

temperature anomalies of which closely co-vary with Arctic temperatures (Bengtsson et al. 2004; 570 

Polyakov et al. 2004, 2005, 2010). In effect, incremental forcings resulting from a cascade of 571 

feedbacks reducing sea ice extent appear to be integrated into the system. The product of their 572 

collective impact is expressed in peak values of Arc T. NHT lags by about a year or two.  573 
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Simultaneous with the culmination of anomalies that have been collectively destroying 574 

ice and delivering heat to the Arctic are processes that counter this trend. One example is the 575 

poleward displacement of the Arctic Front due to the retreating sea ice edge. Precipitation and 576 

associated runoff are similarly displaced poleward. They are major supplies of freshwater for the 577 

subsequent regime’s ice growth. But for now, only decreasing ice, increasing Atlantic sea-578 

surface temperatures, and warming surface-air temperatures are apparent.  579 

 580 

4.5 Transition: After temperatures peak, surface temperatures begin to decrease, while AMO 581 

continues to warm and sea-ice extent continues to wane. This short duration of seemingly 582 

incongruent index trends marks regime transition, indicated by dashed line on Figure 12, from 583 

the peak of Group IV to the regime reversal at the peak of Group –I. Once the peak of Group –I 584 

is reached, a maximally warm AMO reverses trend; WIE begins to rebound. A new regime of 585 

cooling begins - punctuation on a continuum of an ever evolving, quasi-oscillatory system. 586 

  587 

5 Summary and Discussion 588 

We used multivariate statistical analysis to extend the WKT hypothesis of a secularly varying 589 

signal hemispherically propagating through a network of synchronized climate indices during the 590 

20
th

 century. We expanded the original database with the incorporation of Arctic sea ice and a 591 

variety of other parameters, including proxy data reflecting sub-processes within the wave. Sea 592 

ice in the shelf seas of the Eurasian Arctic region emerged in this study as playing the pivotal 593 

role in propagating and sustaining the 20
th

 century stadium-wave signal, with interaction of 594 

positive and negative feedbacks governing the ice coverage and related atmospheric/oceanic 595 

responses.   596 
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We found that the stadium-wave signal propagates through four different stages of 597 

climate regime evolution. Each stage reflects a particular behavior or a particular set of sub-598 

process interactions. And at each stage, activity is heightened in a particular geographic region. 599 

At all stages, seeds of regime reversal are embedded within the collection of sub-processes 600 

regulating the Arctic freshwater balance, thereby subtly and incrementally imposing ‘curbs’ on 601 

the prevailing trend of sea ice coverage, assuring an inevitable regime reversal years in the 602 

future. These negative feedbacks modify the Arctic freshwater balance through: i) sea ice related 603 

shifts in the Arctic Front and associated zones of precipitation and continental runoff; ii) ice-604 

cover associated sea-level-pressure changes that reorganize winds and thereby direction of 605 

freshwater and sea ice export between the Arctic Basin and marginal seas; iii) modified influx of 606 

warm, saline water into the marginal seas, particularly in the Atlantic sector; iv) and Pacific 607 

atmospheric circulation anomalies negatively feeding back onto the Atlantic freshwater balance 608 

through remote modification of precipitation regimes.  609 

A robust halocline and extensive ice cover introduce a warm regime and promote 610 

processes that lead to their destruction. Overshadowed are the accruing embedded ‘curbs’ that 611 

ultimately moderate the destruction and bring a warm regime to its close. Reduced ice cover and 612 

a weak halocline at the end of a warming interval initiate a cooling regime whose dynamics 613 

collectively rebuild the halocline and ice cover, accompanied by an accumulating influence of 614 

embedded ‘curbs’ that ultimately reverse the trend.  Our results for this multidecadal component 615 

of Eurasian Arctic dynamics are consistent with the ideas of Zakharov (1997) who describes the 616 

oscillatory nature of the ice-ocean-atmosphere system in terms of ‘braking’ – the idea that 617 

positive and negative feedbacks interact in such a way as to limit trends of sea ice growth and sea 618 

ice destruction. 619 
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Sub-processes that interact to impose this blueprint of positive and negative feedbacks 620 

and the consequent temperature trends are schematically summarized in Figure 13. This 621 

stadium-wave ‘wheel’ cartoon representation combines components involved in stadium-wave 622 

propagation with the co-varying proxy indices. The wheel is divided into eight segments, each 623 

representing a Temporal Group of co-varying indices: four positive-polarity Groups and four 624 

negative-polarity Groups. Roman numerals designating the Temporal Group number are 625 

positioned at the narrow end of its associated segment. Indices of each Temporal Group populate 626 

the designated wheel segment. Dates on the perimeter indicate dates around which the indices 627 

peaked (or are projected to peak); these dates represent stages of regime development: four 628 

stages for a warming regime (dates in red) supplanted by four stages of a cooling regime (dates 629 

in blue). Differently colored rings host indices belonging to shared process or medium, e.g. WKT 630 

indices in the inner grey ring; ice indices in the yellow ring; wind related ones in the blue; and 631 

co-varying proxy indices in the outer green ring. Read clockwise to follow the propagating wave 632 

as it moves through each of the three systems – ocean, ice, and wind – divided among the 633 

Temporal Groups, the peaks of which represent stages of climate-regime evolution, the processes 634 

of which leave traces etched into the co-varying proxy indices.  635 

By framing regime evolution in context of stadium-wave propagation, we gain insight 636 

into behaviors resulting from the temporal alignment of the different stages. For example, 637 

McCabe et al. (2004) document drought patterns of the western United States, finding their 638 

occurrences increase with warm AMO phases. North-south distribution of drought patterns is 639 

further scripted by which phase of PDO co-occurs with AMO. The stadium wave also provides 640 

perspective on seemingly discordant observations. Examples can be found in the previously 641 

discussed out-of-phase alignment of surface air temperature with AMO that occur during 642 
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hypothesized transitions between regimes; and in changing trends of sea ice among the various 643 

seas during intervals of dominantly positive or negative surface temperature anomalies. 644 

We suggest that the stadium-wave hypothesis holds promise in putting in perspective the 645 

numerous observations of climate behavior; offers potential attribution and predictive capacity; 646 

and that through use of its associated proxies, may facilitate investigation of past behavior that 647 

may better inform our view of future behavior. 648 

In recent decades, rapid changes in the Arctic have been documented (e.g. Alkire et al. 649 

2007). Most interpretations of the recent decline in Arctic sea ice extent have focused on the role 650 

of anthropogenic forcing (e.g. Johannessen et al. 2004), with some allowance for natural 651 

variability (e.g. Zhang el al. 2010). How can we interpret the recent decline of Arctic Sea ice 652 

extent in context of the stadium wave? Alexeev et al (2013) observe pronounced low ice 653 

coverage between 2004 and 2008 and conclude it is primarily linked to the temperature of the 654 

influx of the Atlantic Intermediate Water (AIW; Polyakov et al. 2004, 2010) into the Barents 655 

Sea. Data values of the Eurasian region in 2008, not included in our analysis, indicate maximum 656 

summer ice-cover destruction in the ArcSib region east of the Barents Sea, accompanied by late-657 

onset of sea ice growth the following winter months. And further to the east, influx of warm 658 

Pacific water through the Bering Strait has been identified (Shimada et al. 2006; Wang et al. 659 

2009; Alexeev et al. 2013) as one factor contributing to the Arctic sea ice decline there. None of 660 

these observations are inconsistent with the stadium wave, which if extrapolated beyond the 20
th

 661 

century, reflects low ice in all three regions cited: the WIE, ArcSib, and EIE (see Figure 3). But 662 

according to stadium-wave projections, and according to our interpretation of stadium-wave 663 

evolution, this trend should reverse, under the condition that the stadium-wave hypothesis 664 
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captures 20
th

 century dynamics correctly. Rebound in WIE, followed by ArcSib should occur 665 

after the estimated 2006 minimum of WIE and maximum of AMO (e.g. Figures 3, 10, and 13).  666 

Timmermans et al. (2011) measured a notable increase in surface freshening of the region 667 

of the Greenland Sea, between the North Pole and the Fram Strait in 2010 that was not due to 668 

summer melt. Using models to interpret their observations, they concluded that relatively abrupt 669 

changes documented to have occurred in 2009 in large-scale wind patterns could account for 670 

freshening via re-distribution of freshwater within the Arctic and an increase in river runoff. 671 

Timmermans et al. concede that they cannot speculate on duration of this observed freshening 672 

and wind shift, but note that the upper-ocean salinity changes are not of seasonal origin.  673 

While evidence strongly supports our hypothesis of a secularly varying climate signal 674 

propagating through a hemispheric network of synchronized ocean, atmosphere, and ice indices 675 

during the 20
th

 century, we cannot know if this variability, tempo, and sequential chronology will 676 

continue into the future. How changes in external forcing might affect the Eurasian Arctic sea ice 677 

in context of an apparent quasi-oscillatory ocean-ice-atmosphere system is a burning question. 678 

Modeled results are often invoked to guide projected climate trends, yet WP found no 679 

decadal to multidecadal-scale hemispherically propagating signal in networks of indices 680 

simulated from data generated by runs of the CMIP3 suite of models, leading to the inference 681 

that 21
st
-century model simulations may not accurately capture dynamics necessary to 682 

reconstruct stadium-wave behavior. 683 

Understanding how stadium-wave behavior might respond to changing external forces 684 

may be facilitated by extending the record prior to the 20
th

 century via proxy data. Evaluation of 685 

300-year records of proxies by Wyatt (2012) suggests that changes occurred in tempo and 686 

amplitude prior to the 1800s, perhaps in response to changes in external forcing. Proxy-process 687 
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relationships established throughout the paper, representing the proposed four stages of climate-688 

regime evolution, suggest a means of extending the stadium-wave signal’s record, providing 689 

potential insight into attribution of behavior past, present, and future.  690 
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Table Captions 939 

Table 1. Index descriptions for indices appended to original stadium-wave network 940 

Table 2. Ice Categories:  Correlations of sea ice-extent in shelf seas of the Eurasian Arctic. Seas 941 

are grouped in several ways. Each group plays a specific role in the generation and/or 942 

transmission of climate signal. Raw data smoothed 13-y.  Significance levels: in 943 

red=p<1%; in blue =p< 5%. 944 

Table 3a. Temporal Group I: correlations reflecting ocean-ice coupling. Raw data smoothed 13-945 

y. Significance levels: in red=p<1%; in blue = p<5%. 946 

Table 3b. Temporal Group I: correlations reflecting relationship between anomalies of Pacific-947 

centered circulations and Group I indices. Raw data smoothed 13-y. Significance levels: 948 

in red=p<1%; in blue = p<5%. 949 

Table 3c. Temporal Group I:  correlations of Proxies with Group I indices. Raw data smoothed 950 

13-y. Significance levels: in red=p<1%; in blue = p<5%. 951 

Table 4. Temporal Group II: correlations reflecting ice-atmosphere coupling. Significance 952 

levels: in red=p<1%; in blue = p<5%. 953 

Table 5a. Temporal Group III: Correlations between anomaly trends of sea ice extent and 954 

associated wind patterns with Pacific-centered ocean/atmosphere circulations.  955 

Significance level: in red=p<1%. 956 

Table 5b. Temporal Group III: Japanese Sardine Proxy with Pacific-centered circulation-pattern 957 

indices. Significance level: in red=p<1%. 958 

Table 6a. Temporal Group IV: anomaly trends of sea ice extent and related circulation patterns 959 

correlate with temperature. Significance levels for correlations: in red=p<1%; in blue = 960 

p<5%. 961 
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Table 6b. Temporal Group IV: ngLOD proxy with wind anomaly and Arctic T. Significance 962 

levels: in red=p<1%; in blue =p< 5%. 963 

Table 6c. Temporal Group IV:  correlation shows relationship of Arctic temperature with sea ice 964 

in WIE. Significance Levels: in red=p<1%; in blue = p<5%. 965 
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Figure Captions 985 

Fig. 1. Arctic Ocean and marginal seas used in this study (1-6 in this study (shaded in gray)): 1) 986 

Greenland Sea, 2) Barents Sea, 3) Kara Sea, 4) Laptev Sea, 5) East Siberian Sea, 6) 987 

Chukchi Sea. Categories of Seas include: NEB = 1&2; ArcSib = 3-6; WIE = 1-3; EIE = 988 

4-6; and TIE = 1-6. [Also shown: 7) Beaufort Seas, 8) Baffin Bay, 9) Hudson Bay, and 989 

10) the Norwegian Sea.] Adapted with permission from: Frolov et al. 2009. 990 

Fig. 2. a) Plot of MSSA normalized RCs 1&2 of Original 20
th

-century Stadium-Wave (adapted 991 

from Wyatt et al. 2011 (WKT)). Note: NHT and AMO are negative; b) M-SSA spectrum 992 

of a. Error bars in b are based on North et al. (1982) criterion, with the number of 993 

degrees-of-freedom set to 40, based on decorrelation time of ~2.5 years. Red-dashed lines 994 

in panel (b) represent the 95% spread of M-SSA eigenvalues based on 100 simulations of 995 

the 8-valued red-noise model (1), which assumes zero true correlations between the 996 

members of the eight-index set. 997 

Fig. 3. Annotated Expanded ‘Stadium Wave’ shows 20
th

-century signal propagation through a 998 

15-index-member network. Selected indices are a sub-set of a broader network. Four 999 

clusters of indices are highlighted (+/- I through IV). Each cluster is termed a “Temporal 1000 

Group”. Peak values of Group indices represent stages of climate-regime evolution. Each 1001 

is discussed individually (see text) and plotted (Figures 7-10). Plotted indices are 1002 

normalized reconstructed components of M-SSA modes 1&2. 1003 

Fig. 4.  M-SSA spectrum of expanded stadium-wave network shown in Figure 3. Error bars are 1004 

based on North et al. (1982) criterion, with the number of degrees-of-freedom set to 40, 1005 

based on decorrelation time of ~2.5 years. Red-dashed lines in panel represent the 95% 1006 

spread of M-SSA eigenvalues based on 1000 simulations of the 15-valued red-noise 1007 
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model (1), which assumes zero true correlations between the members of the 15-index 1008 

set. 1009 

Fig. 5. Channel-fraction variance due to M-SSA leading modes 1&2. Values indicate the amount 1010 

of an index’s variability that is due to the stadium-wave signal.  Indices represent Groups: 1011 

I [WIE, AMO, GB]; II [ArcSib, AT, NAOw, NPGO]; III [EIE, NINO, JS, PDO, ALPI]; 1012 

IV [ArcticT, ngLOD, and NHT]. 1013 

Fig. 6. Raw data plots: 20
th

-century relationships among anomaly trends of negatively signed 1014 

Pacific circulations (e.g. ngPCI and -csPDO) and the trend of ngAMO. “Change-points” 1015 

of anomaly trends indicate endings of intervals dominated by either positive or negative 1016 

anomalies. Change-points of Pacific anomaly trends co-occur with extrema of the AMO 1017 

curve. Plotted indices: raw data. AMO smoothed 13y; ngPCI and-csPDO are not 1018 

smoothed. 1019 

Fig. 7. Temporal Group I: characterized by ocean-ice coupling, with focus of activity in the 1020 

Atlantic sector. Peak values center on ~1918 and 1976; minimum values in the 20
th

 1021 

century center on ~1942. Associated proxies are the G. bulloides and ngDipole. Plotted 1022 

indices are normalized reconstructed components of M-SSA modes 1&2. 1023 

Fig. 8. Temporal Group II:  characterized by ice-atmosphere coupling. Sea ice extent in Russian 1024 

Arctic (ArcSib) and related large-scale wind patterns co-vary with peak values centered 1025 

on ~1923 and ~1982; minimum values center on ~1950. Associated proxy is the NPGO 1026 

proxy. Plotted indices are normalized reconstructed components of M-SSA modes 1&2. 1027 

Fig. 9. Temporal Group III: Pacific centered atmospheric, oceanic, and ice indices. Indices reach 1028 

maximum values ~1930 and 1990 and minimum values ~1904 and ~1964. Associated 1029 
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proxy is the Japanese Sardine index. Plotted indices are normalized reconstructed 1030 

components of M-SSA modes 1&2. 1031 

Fig. 10. Temporal Group IV: culmination of anomaly trends of sea ice extent, associated basin-1032 

scale winds, and temperature extrema. Maximum values center on ~1938 and ~1998; 1033 

minima ~1910 and ~1971. Note: csArcSib leads other indices ~3y. Associated proxy is 1034 

ngLOD. Plotted indices are normalized reconstructed components of M-SSA modes 1&2. 1035 

Fig. 11. Schematic reflects index relationships at each stage of climate-regime evolution. 1036 

Vertical lines represent peak values of indices for each Temporal Group (refer to Figures 1037 

7-10). Dates for these maxima are indicated along the bottom. Four Temporal Groups are 1038 

represented, each by one index. They are listed in the left column. Arrows indicate index 1039 

trends between ‘stages’ (or peaks of Temporal-Group indices). Red arrows indicate an 1040 

increasing trend. Blue arrows a decreasing one. Note: AMO sign is positive in chart. See 1041 

text for explanation. 1042 

Fig. 12. Stadium-Wave ‘Mechanism’: schematic of simplified version of stadium-wave-signal 1043 

propagation through the ocean-ice-atmospheric network and its influence on climate-1044 

regime evolution. Roman numerals indicate processes related to Temporal Groups I 1045 

through IV. Numbers in red (blue) indicate increasing (decreasing) Arctic and Northern 1046 

Hemisphere temperatures. (MTG = meridional temperature gradient; WAA = warm air 1047 

advection) 1048 

Fig. 13. Stadium-Wave ‘Wheel’: Temporal Group indices are displayed in ‘wheel’ segments. 1049 

Rings contain indices according to system: WKT indices are in the grey ring; ice indices 1050 

fill the yellow ring; wind and wind-related indices, the blue-green ring; and proxies 1051 

populate the outer green ring. Refer to text on how to read ‘the wheel’. 1052 
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Table 1. Index descriptions for indices appended to original stadium-wave network 1053 

 1054 

Index/Acronym Reference/Data source 
Description/General 

Information 

(AO) Arctic Oscillation 
Thompson and Wallace 2000   www.atmos.colostate.edu or 

http://jisao.washington.edu/ao#data 

Leading EOF of SLP 

poleward 20N 

(GB)  
Globigerina.bulloides  

Black et al. 1999 (record updated to 2009 (personal 

communication) 

G. bulloides  Cariaco Basin 

(ITCZ proxy)  

(JS)  
Japanese Sardine  

Klyashtorin and Lyubushin (2007); Kawasaki 1994;Klyashtorin 

1998 (and personal communication) 

Outbursts off coast of 

Japan. Related to +PDO 

(ngLOD) 
Earth’s Rotational-Rate  

Sidorenkov (2005; 2009) and personal communication 

http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/lod-1623.html  

low-frequency-variability 

of negative length-of-day  

(NPGO)  
SST proxy  

Nurhati et al. (2011):  

+NPGO ~ -SSTs of coral-based Sr/Ca proxy (R = -0.85) 

Coral Sr/Ca SST proxy 

162ºW, 6ºN 

(Arctic T) 
Arctic surface 

temperature anomalies 

Frolov et al. (2009) personal communication Smolyanitsky 

http://wdc.aari.ru/datasets/d0005/txt  

Mean annual surface air 

temperature (SAT): 70 to 

85ºN for 1900-2007 

(Grnlnd)  
Greenland sea-ice extent 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values 

~15ºW-15ºE 

(Barents) 
Barents sea-ice extent 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values  

~15ºE-60ºE 

(NEB) North European 

Basin 

Frolov et al (2009) Mean August values: 

(Greenland + Barents ice) 

(Kara)  
Kara sea-ice extent 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values 

~60ºE-100ºE 

(WIE) [Grn, Bar, Kara] 

West Ice Extent 

Frolov et al. (2009)  Mean August values: 

~15ºW~100ºE  

(Laptv)  
Laptev sea-ice extent 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values: 

~100ºE-140ºE 

(E.Sib)  
East Siberian SIE 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values: 

~140ºE-~180º 

(Chuk)  
Chukchi sea-ice extent 

Frolov et al. (2009) also available at: 

http://wdc.aari.ru/datasets/d0005/txt  

Mean August values: 

~180-155ºW 

(EIE) [Lap,ESib, Chuk] 

East Ice Extent  

Frolov et al. (2009)  Mean August values:100ºE 

-~155ºW 

(ArcSib) Arctic Seas of 

Siberia [Kara EIE] 

Frolov et al. (2009) Mean August values: Kara 

+ EIE 

(TIE) WIE + EIE 

Total Ice Extent :  

Frolov et al. (2009)  Mean August values: 15ºW 

-  155ºW 

(PCI) 
Pacific Circulation Indx 

Beamish et al. 1998; King et al. 1998 Anomaly trend of Pacific 

atmospheric circulation 

(Dipole) proxy A-ITCZ 

Atlantic SST Dipole  

Keenlyside et al. 2008 

 

SSTavg (60 to 10W, 40to 

60N)-(50to0W, 40to60S );  

 1055 

 1056 

 1057 
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Table 2. Ice Categories:  Correlations of sea ice-extent in shelf seas of the Eurasian Arctic. Seas 1058 

are grouped in several ways. Each group plays a specific role in the generation and/or 1059 

transmission of climate signal. Raw data smoothed 13-y.  Significance levels: in 1060 

red=p<1%; in blue =p< 5%. 1061 

 1062 

Indices NEB WIE TIE Arc_Sib EIE 

Greenland 0.95 0.90 0.65   

Barents 0.98 0.94 0.66   

Kara 0.70 0.87 0.94 0.87  

WIE 0.96 1.0 0.84 0.57  

TIE 0.68 0.84 1.0 0.91  

Laptev    0.70 0.85 

East_Sib    0.55 0.91 

Chukchi    0.63 0.91 

EIE    0.69 1.0 

 1063 

 1064 

 1065 

 1066 

Table 3a. Temporal Group I: correlations reflecting ocean-ice coupling. Raw data smoothed 13-1067 

y. Significance levels: in red=p<1%; in blue = p<5%. 1068 

 1069 

Indices NEB WIE 

ngAMO 0.88 0.89 

 1070 

 1071 

 1072 

 1073 

 1074 

Table 3b. Temporal Group I: correlations reflecting relationship between anomalies of Pacific-1075 

centered circulations and Group I indices. Raw data smoothed 13-y. Significance levels: 1076 

in red=p<1%; in blue = p<5%. 1077 

 1078 

Indices NEB WIE ngAMO ngPCI 

ngPCI 0.84 0.92 0.93 1.0 

cs(ng)NPO 0.82 0.89 0.93 0.96 

cs(ng)PDO 0.73 0.83 0.86 0.95 

cs(ng)ALPI 0.72 0.84 0.83 0.95 

 1079 
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Table 3c. Temporal Group I:  correlations of Proxies with Group I indices. Raw data smoothed 1080 

13-y. Significance levels: in red=p<1%; in blue = p<5%. 1081 

 1082 

Indices GB ngDipole 

Greenland 0.78 0.79 

Barents 0.72 0.70 

NEB 0.77 0.76 

WIE 0.78 0.75 

ngAMO 0.88 0.90 

ngPCI 0.80 0.79 

Ng_csPDO 0.85 0.83 

Ng_csNPO 0.83 0.81 

 1083 

 1084 

 1085 

Table 4. Temporal Group II: correlations reflecting ice-atmosphere coupling. Significance 1086 

levels: in red=p<1%; in blue = p<5%. 1087 

 1088 

Indices TIE ArcSib Kara ice Chukchi ice Laptev ice 

AT 0.75 0.76 0.70 0.57  

NPGO 0.56 0.69  0.62 0.60 

 1089 

 1090 

 1091 

Table 5a. Temporal Group III: Correlations between anomaly trends of sea ice extent and 1092 

associated wind patterns with Pacific-centered ocean/atmosphere circulations.  1093 

Significance level: in red=p<1%. 1094 

 1095 

Indices csWIE csTIE csNEB csArc_Sib csKara csAT 

NPO 0.83 0.86 0.77 0.81 0.87 0.77 

ALPI  0.79  0.81 0.77 0.76 

PDO  0.83  0.82 0.81  

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 
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Table 5b. Temporal Group III: Japanese Sardine Proxy with Pacific-centered circulation-pattern 1103 

indices. Significance level: in red=p<1%. 1104 

 1105 

Indices JS 

NPO 0.69 

PDO 0.80 

ALPI 0.70 

 1106 

Table 6a. Temporal Group IV: anomaly trends of sea ice extent and related circulation patterns 1107 

correlate with temperature. Significance levels for correlations: in red=p<1%; in blue = 1108 

p<5%. 1109 

 1110 

Indices Arctic Temperature NHT csArcSib 

csNAOw 0.81   

csAOw 0.86   

csNPGO 0.79   

csAT (aka ACI) 0.92 0.81 0.88 

csNINO 0.85 0.83  

csArcSib 0.77   

 1111 

 1112 

Table 6b. Temporal Group IV: ngLOD proxy with wind anomaly and Arctic T. Significance 1113 

levels: in red=p<1%; in blue =p< 5%. 1114 

 1115 

Indices ngLOD 

csAT (aka ACI) 0.83 

ArcticT 0.76 

 1116 

 1117 

 1118 

 1119 
Table 6c. Temporal Group IV:  correlation shows relationship of Arctic temperature with sea ice 1120 

in WIE. Significance Levels: in red=p<1%; in blue = p<5%. 1121 

 1122 

Indices Arctic Temperature 

NEB -0.78 

WIE -0.76 

 1123 

 1124 

 1125 



 51 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 
Fig. 1. Arctic Ocean and marginal seas used in this study (1-6 in this study (shaded in gray)): 1) 1142 

Greenland Sea, 2) Barents Sea, 3) Kara Sea, 4) Laptev Sea, 5) East Siberian Sea, 6) 1143 

Chukchi Sea. Categories of Seas include: NEB = 1&2; ArcSib = 3-6; WIE = 1-3; EIE = 1144 

4-6; and TIE = 1-6. [Also shown: 7) Beaufort Seas, 8) Baffin Bay, 9) Hudson Bay, and 1145 

10) the Norwegian Sea.] Adapted with permission from: Frolov et al. 2009. 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 

 1153 
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 1171 

 1172 
Fig. 2. a) Plot of MSSA normalized RCs 1&2 of Original 20

th
-century Stadium-Wave (adapted 1173 

from Wyatt et al. 2011 (WKT)). Note: NHT and AMO are negative; b) M-SSA spectrum 1174 

of a. Error bars in b are based on North et al. (1982) criterion, with the number of 1175 

degrees-of-freedom set to 40, based on decorrelation time of ~2.5 years. Red-dashed lines 1176 

in panel (b) represent the 95% spread of M-SSA eigenvalues based on 100 simulations of 1177 

the 8-valued red-noise model (1), which assumes zero true correlations between the 1178 

members of the eight-index set. 1179 
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 1206 

 1207 

 1208 

 1209 
Fig. 3. Annotated Expanded ‘Stadium Wave’ shows 20

th
-century signal propagation through a 1210 

15-index-member network. Selected indices are a sub-set of a broader network. Four 1211 

clusters of indices are highlighted (+/- I through IV). Each cluster is termed a “Temporal 1212 

Group”. Peak values of Group indices represent stages of climate-regime evolution. Each 1213 

is discussed individually (see text) and plotted (Figures 7-10). Plotted indices are 1214 

normalized reconstructed components of M-SSA modes 1&2. 1215 
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 1224 
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 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

Fig. 4.  M-SSA spectrum of expanded stadium-wave network shown in Figure 3. Error bars are 1234 

based on North et al. (1982) criterion, with the number of degrees-of-freedom set to 40, 1235 

based on decorrelation time of ~2.5 years. Red-dashed lines in panel represent the 95% 1236 

spread of M-SSA eigenvalues based on 1000 simulations of the 15-valued red-noise 1237 

model (1), which assumes zero true correlations between the members of the 15-index 1238 

set. 1239 
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 1250 
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 1255 
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 1259 

 1260 

Fig. 5. Channel-fraction variance due to M-SSA leading modes 1&2. Values indicate the amount 1261 

of an index’s variability that is due to the stadium-wave signal.  Indices represent Groups: 1262 

I [WIE, AMO, GB]; II [ArcSib, AT, NAOw, NPGO]; III [EIE, NINO, JS, PDO, ALPI]; 1263 

IV [ArcticT, ngLOD, and NHT]. 1264 
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 1275 
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 1279 

 1280 

 1281 

 1282 

 1283 

Fig. 6. Raw data plots: 20
th

-century relationships among anomaly trends of negatively signed 1284 

Pacific circulations (e.g. ngPCI and -csPDO) and the trend of ngAMO. “Change-points” 1285 

of anomaly trends indicate endings of intervals dominated by either positive or negative 1286 

anomalies. Change-points of Pacific anomaly trends co-occur with extrema of the AMO 1287 

curve. Plotted indices: raw data. AMO smoothed 13y; ngPCI and-csPDO are not 1288 

smoothed. 1289 
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 1301 
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 1311 

 1312 
Fig. 7. Temporal Group I: characterized by ocean-ice coupling, with focus of activity in the 1313 

Atlantic sector. Peak values center on ~1918 and 1976; minimum values in the 20
th

 1314 

century center on ~1942. Associated proxies are the G. bulloides and ngDipole. Plotted 1315 

indices are normalized reconstructed components of M-SSA modes 1&2. 1316 
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 1360 
Fig. 8. Temporal Group II:  characterized by ice-atmosphere coupling. Sea ice extent in Russian 1361 

Arctic (ArcSib) and related large-scale wind patterns co-vary with peak values centered 1362 

on ~1923 and ~1982; minimum values center on ~1950. Associated proxy is the NPGO 1363 

proxy. Plotted indices are normalized reconstructed components of M-SSA modes 1&2. 1364 
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 1391 
Fig. 9. Temporal Group III: Pacific centered atmospheric, oceanic, and ice indices. Indices reach 1392 

maximum values ~1930 and 1990 and minimum values ~1904 and ~1964. Associated 1393 

proxy is the Japanese Sardine index. Plotted indices are normalized reconstructed 1394 

components of M-SSA modes 1&2. 1395 
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 1434 

 1435 
Fig. 10. Temporal Group IV: culmination of anomaly trends of sea ice extent, associated basin-1436 

scale winds, and temperature extrema. Maximum values center on ~1938 and ~1998; 1437 

minima ~1910 and ~1971. Note: csArcSib leads other indices ~3y. Associated proxy is 1438 

ngLOD. Plotted indices are normalized reconstructed components of M-SSA modes 1&2. 1439 
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 1452 
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 1456 

 1457 
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 1461 

 1462 

 1463 

Fig. 11. Schematic reflects index relationships at each stage of climate-regime evolution. 1464 

Vertical lines represent peak values of indices for each Temporal Group (refer to Figures 1465 

7-10). Dates for these maxima are indicated along the bottom. Four Temporal Groups are 1466 

represented, each by one index. They are listed in the left column. Arrows indicate index 1467 

trends between ‘stages’ (or peaks of Temporal-Group indices). Red arrows indicate an 1468 

increasing trend. Blue arrows a decreasing one. Note: AMO sign is positive in chart. See 1469 

text for explanation. 1470 
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 1479 
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 1490 

 1491 

Fig. 12. Stadium-Wave ‘Mechanism’: schematic of simplified version of stadium-wave-signal 1492 

propagation through the ocean-ice-atmospheric network and its influence on climate-1493 

regime evolution. Roman numerals indicate processes related to Temporal Groups I 1494 

through IV. Numbers in red (blue) indicate increasing (decreasing) Arctic and Northern 1495 

Hemisphere temperatures. (MTG = meridional temperature gradient; WAA = warm air 1496 

advection) 1497 
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 1522 
Fig. 13. Stadium-Wave ‘Wheel’: Temporal Group indices are displayed in ‘wheel’ segments. 1523 

Rings contain indices according to system: WKT indices are in the grey ring; ice indices 1524 

fill the yellow ring; wind and wind-related indices, the blue-green ring; and proxies 1525 

populate the outer green ring. Refer to text on how to read ‘the wheel’. 1526 
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